Metamath Proof Explorer


Theorem nnpw2evenALTV

Description: 2 to the power of a positive integer is even. (Contributed by AV, 2-Jun-2020) (Revised by AV, 20-Jun-2020)

Ref Expression
Assertion nnpw2evenALTV
|- ( N e. NN -> ( 2 ^ N ) e. Even )

Proof

Step Hyp Ref Expression
1 2z
 |-  2 e. ZZ
2 nnnn0
 |-  ( N e. NN -> N e. NN0 )
3 zexpcl
 |-  ( ( 2 e. ZZ /\ N e. NN0 ) -> ( 2 ^ N ) e. ZZ )
4 1 2 3 sylancr
 |-  ( N e. NN -> ( 2 ^ N ) e. ZZ )
5 iddvdsexp
 |-  ( ( 2 e. ZZ /\ N e. NN ) -> 2 || ( 2 ^ N ) )
6 1 5 mpan
 |-  ( N e. NN -> 2 || ( 2 ^ N ) )
7 iseven2
 |-  ( ( 2 ^ N ) e. Even <-> ( ( 2 ^ N ) e. ZZ /\ 2 || ( 2 ^ N ) ) )
8 4 6 7 sylanbrc
 |-  ( N e. NN -> ( 2 ^ N ) e. Even )