Metamath Proof Explorer


Theorem nnq

Description: A positive integer is rational. (Contributed by NM, 17-Nov-2004)

Ref Expression
Assertion nnq
|- ( A e. NN -> A e. QQ )

Proof

Step Hyp Ref Expression
1 nnssq
 |-  NN C_ QQ
2 1 sseli
 |-  ( A e. NN -> A e. QQ )