Step |
Hyp |
Ref |
Expression |
1 |
|
nnge1 |
|- ( A e. NN -> 1 <_ A ) |
2 |
|
0lt1 |
|- 0 < 1 |
3 |
|
nnre |
|- ( A e. NN -> A e. RR ) |
4 |
|
0re |
|- 0 e. RR |
5 |
|
1re |
|- 1 e. RR |
6 |
|
ltletr |
|- ( ( 0 e. RR /\ 1 e. RR /\ A e. RR ) -> ( ( 0 < 1 /\ 1 <_ A ) -> 0 < A ) ) |
7 |
4 5 6
|
mp3an12 |
|- ( A e. RR -> ( ( 0 < 1 /\ 1 <_ A ) -> 0 < A ) ) |
8 |
|
recgt0 |
|- ( ( A e. RR /\ 0 < A ) -> 0 < ( 1 / A ) ) |
9 |
8
|
ex |
|- ( A e. RR -> ( 0 < A -> 0 < ( 1 / A ) ) ) |
10 |
7 9
|
syld |
|- ( A e. RR -> ( ( 0 < 1 /\ 1 <_ A ) -> 0 < ( 1 / A ) ) ) |
11 |
3 10
|
syl |
|- ( A e. NN -> ( ( 0 < 1 /\ 1 <_ A ) -> 0 < ( 1 / A ) ) ) |
12 |
2 11
|
mpani |
|- ( A e. NN -> ( 1 <_ A -> 0 < ( 1 / A ) ) ) |
13 |
1 12
|
mpd |
|- ( A e. NN -> 0 < ( 1 / A ) ) |