| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl |
|- ( ( A e. RR /\ 0 < A ) -> A e. RR ) |
| 2 |
|
gt0ne0 |
|- ( ( A e. RR /\ 0 < A ) -> A =/= 0 ) |
| 3 |
1 2
|
rereccld |
|- ( ( A e. RR /\ 0 < A ) -> ( 1 / A ) e. RR ) |
| 4 |
|
arch |
|- ( ( 1 / A ) e. RR -> E. n e. NN ( 1 / A ) < n ) |
| 5 |
3 4
|
syl |
|- ( ( A e. RR /\ 0 < A ) -> E. n e. NN ( 1 / A ) < n ) |
| 6 |
|
recgt0 |
|- ( ( A e. RR /\ 0 < A ) -> 0 < ( 1 / A ) ) |
| 7 |
3 6
|
jca |
|- ( ( A e. RR /\ 0 < A ) -> ( ( 1 / A ) e. RR /\ 0 < ( 1 / A ) ) ) |
| 8 |
|
nnre |
|- ( n e. NN -> n e. RR ) |
| 9 |
|
nngt0 |
|- ( n e. NN -> 0 < n ) |
| 10 |
8 9
|
jca |
|- ( n e. NN -> ( n e. RR /\ 0 < n ) ) |
| 11 |
|
ltrec |
|- ( ( ( ( 1 / A ) e. RR /\ 0 < ( 1 / A ) ) /\ ( n e. RR /\ 0 < n ) ) -> ( ( 1 / A ) < n <-> ( 1 / n ) < ( 1 / ( 1 / A ) ) ) ) |
| 12 |
7 10 11
|
syl2an |
|- ( ( ( A e. RR /\ 0 < A ) /\ n e. NN ) -> ( ( 1 / A ) < n <-> ( 1 / n ) < ( 1 / ( 1 / A ) ) ) ) |
| 13 |
|
recn |
|- ( A e. RR -> A e. CC ) |
| 14 |
13
|
adantr |
|- ( ( A e. RR /\ 0 < A ) -> A e. CC ) |
| 15 |
14 2
|
recrecd |
|- ( ( A e. RR /\ 0 < A ) -> ( 1 / ( 1 / A ) ) = A ) |
| 16 |
15
|
breq2d |
|- ( ( A e. RR /\ 0 < A ) -> ( ( 1 / n ) < ( 1 / ( 1 / A ) ) <-> ( 1 / n ) < A ) ) |
| 17 |
16
|
adantr |
|- ( ( ( A e. RR /\ 0 < A ) /\ n e. NN ) -> ( ( 1 / n ) < ( 1 / ( 1 / A ) ) <-> ( 1 / n ) < A ) ) |
| 18 |
12 17
|
bitrd |
|- ( ( ( A e. RR /\ 0 < A ) /\ n e. NN ) -> ( ( 1 / A ) < n <-> ( 1 / n ) < A ) ) |
| 19 |
18
|
rexbidva |
|- ( ( A e. RR /\ 0 < A ) -> ( E. n e. NN ( 1 / A ) < n <-> E. n e. NN ( 1 / n ) < A ) ) |
| 20 |
5 19
|
mpbid |
|- ( ( A e. RR /\ 0 < A ) -> E. n e. NN ( 1 / n ) < A ) |