Step |
Hyp |
Ref |
Expression |
1 |
|
cardnn |
|- ( A e. _om -> ( card ` A ) = A ) |
2 |
|
cardnn |
|- ( B e. _om -> ( card ` B ) = B ) |
3 |
|
eleq12 |
|- ( ( ( card ` A ) = A /\ ( card ` B ) = B ) -> ( ( card ` A ) e. ( card ` B ) <-> A e. B ) ) |
4 |
1 2 3
|
syl2an |
|- ( ( A e. _om /\ B e. _om ) -> ( ( card ` A ) e. ( card ` B ) <-> A e. B ) ) |
5 |
|
nnon |
|- ( A e. _om -> A e. On ) |
6 |
|
onenon |
|- ( A e. On -> A e. dom card ) |
7 |
5 6
|
syl |
|- ( A e. _om -> A e. dom card ) |
8 |
|
nnon |
|- ( B e. _om -> B e. On ) |
9 |
|
onenon |
|- ( B e. On -> B e. dom card ) |
10 |
8 9
|
syl |
|- ( B e. _om -> B e. dom card ) |
11 |
|
cardsdom2 |
|- ( ( A e. dom card /\ B e. dom card ) -> ( ( card ` A ) e. ( card ` B ) <-> A ~< B ) ) |
12 |
7 10 11
|
syl2an |
|- ( ( A e. _om /\ B e. _om ) -> ( ( card ` A ) e. ( card ` B ) <-> A ~< B ) ) |
13 |
4 12
|
bitr3d |
|- ( ( A e. _om /\ B e. _om ) -> ( A e. B <-> A ~< B ) ) |