Metamath Proof Explorer


Theorem nnsdomel

Description: Strict dominance and elementhood are the same for finite ordinals. (Contributed by Stefan O'Rear, 2-Nov-2014)

Ref Expression
Assertion nnsdomel
|- ( ( A e. _om /\ B e. _om ) -> ( A e. B <-> A ~< B ) )

Proof

Step Hyp Ref Expression
1 cardnn
 |-  ( A e. _om -> ( card ` A ) = A )
2 cardnn
 |-  ( B e. _om -> ( card ` B ) = B )
3 eleq12
 |-  ( ( ( card ` A ) = A /\ ( card ` B ) = B ) -> ( ( card ` A ) e. ( card ` B ) <-> A e. B ) )
4 1 2 3 syl2an
 |-  ( ( A e. _om /\ B e. _om ) -> ( ( card ` A ) e. ( card ` B ) <-> A e. B ) )
5 nnon
 |-  ( A e. _om -> A e. On )
6 onenon
 |-  ( A e. On -> A e. dom card )
7 5 6 syl
 |-  ( A e. _om -> A e. dom card )
8 nnon
 |-  ( B e. _om -> B e. On )
9 onenon
 |-  ( B e. On -> B e. dom card )
10 8 9 syl
 |-  ( B e. _om -> B e. dom card )
11 cardsdom2
 |-  ( ( A e. dom card /\ B e. dom card ) -> ( ( card ` A ) e. ( card ` B ) <-> A ~< B ) )
12 7 10 11 syl2an
 |-  ( ( A e. _om /\ B e. _om ) -> ( ( card ` A ) e. ( card ` B ) <-> A ~< B ) )
13 4 12 bitr3d
 |-  ( ( A e. _om /\ B e. _om ) -> ( A e. B <-> A ~< B ) )