Description: Strong (or "total") induction principle over the naturals. (Contributed by Scott Fenton, 16-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nnsinds.1 | |- ( x = y -> ( ph <-> ps ) ) |
|
| nnsinds.2 | |- ( x = N -> ( ph <-> ch ) ) |
||
| nnsinds.3 | |- ( x e. NN -> ( A. y e. ( 1 ... ( x - 1 ) ) ps -> ph ) ) |
||
| Assertion | nnsinds | |- ( N e. NN -> ch ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnsinds.1 | |- ( x = y -> ( ph <-> ps ) ) |
|
| 2 | nnsinds.2 | |- ( x = N -> ( ph <-> ch ) ) |
|
| 3 | nnsinds.3 | |- ( x e. NN -> ( A. y e. ( 1 ... ( x - 1 ) ) ps -> ph ) ) |
|
| 4 | elnnuz | |- ( N e. NN <-> N e. ( ZZ>= ` 1 ) ) |
|
| 5 | elnnuz | |- ( x e. NN <-> x e. ( ZZ>= ` 1 ) ) |
|
| 6 | 5 3 | sylbir | |- ( x e. ( ZZ>= ` 1 ) -> ( A. y e. ( 1 ... ( x - 1 ) ) ps -> ph ) ) |
| 7 | 1 2 6 | uzsinds | |- ( N e. ( ZZ>= ` 1 ) -> ch ) |
| 8 | 4 7 | sylbi | |- ( N e. NN -> ch ) |