Step |
Hyp |
Ref |
Expression |
1 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
2 |
1
|
a1i |
|- ( N e. NN -> NN = ( ZZ>= ` 1 ) ) |
3 |
|
peano2nn |
|- ( N e. NN -> ( N + 1 ) e. NN ) |
4 |
3 1
|
eleqtrdi |
|- ( N e. NN -> ( N + 1 ) e. ( ZZ>= ` 1 ) ) |
5 |
|
uzsplit |
|- ( ( N + 1 ) e. ( ZZ>= ` 1 ) -> ( ZZ>= ` 1 ) = ( ( 1 ... ( ( N + 1 ) - 1 ) ) u. ( ZZ>= ` ( N + 1 ) ) ) ) |
6 |
4 5
|
syl |
|- ( N e. NN -> ( ZZ>= ` 1 ) = ( ( 1 ... ( ( N + 1 ) - 1 ) ) u. ( ZZ>= ` ( N + 1 ) ) ) ) |
7 |
|
nncn |
|- ( N e. NN -> N e. CC ) |
8 |
|
1cnd |
|- ( N e. NN -> 1 e. CC ) |
9 |
7 8
|
pncand |
|- ( N e. NN -> ( ( N + 1 ) - 1 ) = N ) |
10 |
9
|
oveq2d |
|- ( N e. NN -> ( 1 ... ( ( N + 1 ) - 1 ) ) = ( 1 ... N ) ) |
11 |
10
|
uneq1d |
|- ( N e. NN -> ( ( 1 ... ( ( N + 1 ) - 1 ) ) u. ( ZZ>= ` ( N + 1 ) ) ) = ( ( 1 ... N ) u. ( ZZ>= ` ( N + 1 ) ) ) ) |
12 |
2 6 11
|
3eqtrd |
|- ( N e. NN -> NN = ( ( 1 ... N ) u. ( ZZ>= ` ( N + 1 ) ) ) ) |