Description: The naturals are closed under squaring. (Contributed by Scott Fenton, 29-Mar-2014) (Revised by Mario Carneiro, 19-Apr-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | nnsqcl | |- ( A e. NN -> ( A ^ 2 ) e. NN ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nncn | |- ( A e. NN -> A e. CC ) |
|
2 | sqval | |- ( A e. CC -> ( A ^ 2 ) = ( A x. A ) ) |
|
3 | 1 2 | syl | |- ( A e. NN -> ( A ^ 2 ) = ( A x. A ) ) |
4 | nnmulcl | |- ( ( A e. NN /\ A e. NN ) -> ( A x. A ) e. NN ) |
|
5 | 4 | anidms | |- ( A e. NN -> ( A x. A ) e. NN ) |
6 | 3 5 | eqeltrd | |- ( A e. NN -> ( A ^ 2 ) e. NN ) |