Metamath Proof Explorer


Theorem nnsscn

Description: The positive integers are a subset of the complex numbers. Remark: this could also be proven from nnssre and ax-resscn at the cost of using more axioms. (Contributed by NM, 2-Aug-2004) Reduce dependencies on axioms. (Revised by Steven Nguyen, 4-Oct-2022)

Ref Expression
Assertion nnsscn
|- NN C_ CC

Proof

Step Hyp Ref Expression
1 ax-1cn
 |-  1 e. CC
2 peano2cn
 |-  ( x e. CC -> ( x + 1 ) e. CC )
3 2 rgen
 |-  A. x e. CC ( x + 1 ) e. CC
4 peano5nni
 |-  ( ( 1 e. CC /\ A. x e. CC ( x + 1 ) e. CC ) -> NN C_ CC )
5 1 3 4 mp2an
 |-  NN C_ CC