Metamath Proof Explorer


Theorem nnssz

Description: Positive integers are a subset of integers. (Contributed by NM, 9-Jan-2002) Reduce dependencies on axioms. (Revised by Steven Nguyen, 29-Nov-2022)

Ref Expression
Assertion nnssz
|- NN C_ ZZ

Proof

Step Hyp Ref Expression
1 nnre
 |-  ( x e. NN -> x e. RR )
2 3mix2
 |-  ( x e. NN -> ( x = 0 \/ x e. NN \/ -u x e. NN ) )
3 elz
 |-  ( x e. ZZ <-> ( x e. RR /\ ( x = 0 \/ x e. NN \/ -u x e. NN ) ) )
4 1 2 3 sylanbrc
 |-  ( x e. NN -> x e. ZZ )
5 4 ssriv
 |-  NN C_ ZZ