Step |
Hyp |
Ref |
Expression |
1 |
|
2nn |
|- 2 e. NN |
2 |
|
1ne2 |
|- 1 =/= 2 |
3 |
|
1ex |
|- 1 e. _V |
4 |
|
2ex |
|- 2 e. _V |
5 |
3 4 4 4
|
fpr |
|- ( 1 =/= 2 -> { <. 1 , 2 >. , <. 2 , 2 >. } : { 1 , 2 } --> { 2 , 2 } ) |
6 |
|
2prm |
|- 2 e. Prime |
7 |
6 6
|
pm3.2i |
|- ( 2 e. Prime /\ 2 e. Prime ) |
8 |
4 4
|
prss |
|- ( ( 2 e. Prime /\ 2 e. Prime ) <-> { 2 , 2 } C_ Prime ) |
9 |
7 8
|
mpbi |
|- { 2 , 2 } C_ Prime |
10 |
|
fss |
|- ( ( { <. 1 , 2 >. , <. 2 , 2 >. } : { 1 , 2 } --> { 2 , 2 } /\ { 2 , 2 } C_ Prime ) -> { <. 1 , 2 >. , <. 2 , 2 >. } : { 1 , 2 } --> Prime ) |
11 |
9 10
|
mpan2 |
|- ( { <. 1 , 2 >. , <. 2 , 2 >. } : { 1 , 2 } --> { 2 , 2 } -> { <. 1 , 2 >. , <. 2 , 2 >. } : { 1 , 2 } --> Prime ) |
12 |
2 5 11
|
mp2b |
|- { <. 1 , 2 >. , <. 2 , 2 >. } : { 1 , 2 } --> Prime |
13 |
|
prmex |
|- Prime e. _V |
14 |
|
prex |
|- { 1 , 2 } e. _V |
15 |
13 14
|
elmap |
|- ( { <. 1 , 2 >. , <. 2 , 2 >. } e. ( Prime ^m { 1 , 2 } ) <-> { <. 1 , 2 >. , <. 2 , 2 >. } : { 1 , 2 } --> Prime ) |
16 |
12 15
|
mpbir |
|- { <. 1 , 2 >. , <. 2 , 2 >. } e. ( Prime ^m { 1 , 2 } ) |
17 |
|
2re |
|- 2 e. RR |
18 |
|
3re |
|- 3 e. RR |
19 |
|
2lt3 |
|- 2 < 3 |
20 |
17 18 19
|
ltleii |
|- 2 <_ 3 |
21 |
|
2cn |
|- 2 e. CC |
22 |
|
fveq2 |
|- ( k = 1 -> ( { <. 1 , 2 >. , <. 2 , 2 >. } ` k ) = ( { <. 1 , 2 >. , <. 2 , 2 >. } ` 1 ) ) |
23 |
3 4
|
fvpr1 |
|- ( 1 =/= 2 -> ( { <. 1 , 2 >. , <. 2 , 2 >. } ` 1 ) = 2 ) |
24 |
2 23
|
ax-mp |
|- ( { <. 1 , 2 >. , <. 2 , 2 >. } ` 1 ) = 2 |
25 |
22 24
|
eqtrdi |
|- ( k = 1 -> ( { <. 1 , 2 >. , <. 2 , 2 >. } ` k ) = 2 ) |
26 |
|
fveq2 |
|- ( k = 2 -> ( { <. 1 , 2 >. , <. 2 , 2 >. } ` k ) = ( { <. 1 , 2 >. , <. 2 , 2 >. } ` 2 ) ) |
27 |
4 4
|
fvpr2 |
|- ( 1 =/= 2 -> ( { <. 1 , 2 >. , <. 2 , 2 >. } ` 2 ) = 2 ) |
28 |
2 27
|
ax-mp |
|- ( { <. 1 , 2 >. , <. 2 , 2 >. } ` 2 ) = 2 |
29 |
26 28
|
eqtrdi |
|- ( k = 2 -> ( { <. 1 , 2 >. , <. 2 , 2 >. } ` k ) = 2 ) |
30 |
|
id |
|- ( 2 e. CC -> 2 e. CC ) |
31 |
30
|
ancri |
|- ( 2 e. CC -> ( 2 e. CC /\ 2 e. CC ) ) |
32 |
3
|
jctl |
|- ( 2 e. CC -> ( 1 e. _V /\ 2 e. CC ) ) |
33 |
2
|
a1i |
|- ( 2 e. CC -> 1 =/= 2 ) |
34 |
25 29 31 32 33
|
sumpr |
|- ( 2 e. CC -> sum_ k e. { 1 , 2 } ( { <. 1 , 2 >. , <. 2 , 2 >. } ` k ) = ( 2 + 2 ) ) |
35 |
21 34
|
ax-mp |
|- sum_ k e. { 1 , 2 } ( { <. 1 , 2 >. , <. 2 , 2 >. } ` k ) = ( 2 + 2 ) |
36 |
|
2p2e4 |
|- ( 2 + 2 ) = 4 |
37 |
35 36
|
eqtr2i |
|- 4 = sum_ k e. { 1 , 2 } ( { <. 1 , 2 >. , <. 2 , 2 >. } ` k ) |
38 |
20 37
|
pm3.2i |
|- ( 2 <_ 3 /\ 4 = sum_ k e. { 1 , 2 } ( { <. 1 , 2 >. , <. 2 , 2 >. } ` k ) ) |
39 |
|
fveq1 |
|- ( f = { <. 1 , 2 >. , <. 2 , 2 >. } -> ( f ` k ) = ( { <. 1 , 2 >. , <. 2 , 2 >. } ` k ) ) |
40 |
39
|
sumeq2sdv |
|- ( f = { <. 1 , 2 >. , <. 2 , 2 >. } -> sum_ k e. { 1 , 2 } ( f ` k ) = sum_ k e. { 1 , 2 } ( { <. 1 , 2 >. , <. 2 , 2 >. } ` k ) ) |
41 |
40
|
eqeq2d |
|- ( f = { <. 1 , 2 >. , <. 2 , 2 >. } -> ( 4 = sum_ k e. { 1 , 2 } ( f ` k ) <-> 4 = sum_ k e. { 1 , 2 } ( { <. 1 , 2 >. , <. 2 , 2 >. } ` k ) ) ) |
42 |
41
|
anbi2d |
|- ( f = { <. 1 , 2 >. , <. 2 , 2 >. } -> ( ( 2 <_ 3 /\ 4 = sum_ k e. { 1 , 2 } ( f ` k ) ) <-> ( 2 <_ 3 /\ 4 = sum_ k e. { 1 , 2 } ( { <. 1 , 2 >. , <. 2 , 2 >. } ` k ) ) ) ) |
43 |
42
|
rspcev |
|- ( ( { <. 1 , 2 >. , <. 2 , 2 >. } e. ( Prime ^m { 1 , 2 } ) /\ ( 2 <_ 3 /\ 4 = sum_ k e. { 1 , 2 } ( { <. 1 , 2 >. , <. 2 , 2 >. } ` k ) ) ) -> E. f e. ( Prime ^m { 1 , 2 } ) ( 2 <_ 3 /\ 4 = sum_ k e. { 1 , 2 } ( f ` k ) ) ) |
44 |
16 38 43
|
mp2an |
|- E. f e. ( Prime ^m { 1 , 2 } ) ( 2 <_ 3 /\ 4 = sum_ k e. { 1 , 2 } ( f ` k ) ) |
45 |
|
oveq2 |
|- ( d = 2 -> ( 1 ... d ) = ( 1 ... 2 ) ) |
46 |
|
df-2 |
|- 2 = ( 1 + 1 ) |
47 |
46
|
oveq2i |
|- ( 1 ... 2 ) = ( 1 ... ( 1 + 1 ) ) |
48 |
|
1z |
|- 1 e. ZZ |
49 |
|
fzpr |
|- ( 1 e. ZZ -> ( 1 ... ( 1 + 1 ) ) = { 1 , ( 1 + 1 ) } ) |
50 |
48 49
|
ax-mp |
|- ( 1 ... ( 1 + 1 ) ) = { 1 , ( 1 + 1 ) } |
51 |
|
1p1e2 |
|- ( 1 + 1 ) = 2 |
52 |
51
|
preq2i |
|- { 1 , ( 1 + 1 ) } = { 1 , 2 } |
53 |
50 52
|
eqtri |
|- ( 1 ... ( 1 + 1 ) ) = { 1 , 2 } |
54 |
47 53
|
eqtri |
|- ( 1 ... 2 ) = { 1 , 2 } |
55 |
45 54
|
eqtrdi |
|- ( d = 2 -> ( 1 ... d ) = { 1 , 2 } ) |
56 |
55
|
oveq2d |
|- ( d = 2 -> ( Prime ^m ( 1 ... d ) ) = ( Prime ^m { 1 , 2 } ) ) |
57 |
|
breq1 |
|- ( d = 2 -> ( d <_ 3 <-> 2 <_ 3 ) ) |
58 |
55
|
sumeq1d |
|- ( d = 2 -> sum_ k e. ( 1 ... d ) ( f ` k ) = sum_ k e. { 1 , 2 } ( f ` k ) ) |
59 |
58
|
eqeq2d |
|- ( d = 2 -> ( 4 = sum_ k e. ( 1 ... d ) ( f ` k ) <-> 4 = sum_ k e. { 1 , 2 } ( f ` k ) ) ) |
60 |
57 59
|
anbi12d |
|- ( d = 2 -> ( ( d <_ 3 /\ 4 = sum_ k e. ( 1 ... d ) ( f ` k ) ) <-> ( 2 <_ 3 /\ 4 = sum_ k e. { 1 , 2 } ( f ` k ) ) ) ) |
61 |
56 60
|
rexeqbidv |
|- ( d = 2 -> ( E. f e. ( Prime ^m ( 1 ... d ) ) ( d <_ 3 /\ 4 = sum_ k e. ( 1 ... d ) ( f ` k ) ) <-> E. f e. ( Prime ^m { 1 , 2 } ) ( 2 <_ 3 /\ 4 = sum_ k e. { 1 , 2 } ( f ` k ) ) ) ) |
62 |
61
|
rspcev |
|- ( ( 2 e. NN /\ E. f e. ( Prime ^m { 1 , 2 } ) ( 2 <_ 3 /\ 4 = sum_ k e. { 1 , 2 } ( f ` k ) ) ) -> E. d e. NN E. f e. ( Prime ^m ( 1 ... d ) ) ( d <_ 3 /\ 4 = sum_ k e. ( 1 ... d ) ( f ` k ) ) ) |
63 |
1 44 62
|
mp2an |
|- E. d e. NN E. f e. ( Prime ^m ( 1 ... d ) ) ( d <_ 3 /\ 4 = sum_ k e. ( 1 ... d ) ( f ` k ) ) |