Step |
Hyp |
Ref |
Expression |
1 |
|
isgbe |
|- ( N e. GoldbachEven <-> ( N e. Even /\ E. p e. Prime E. q e. Prime ( p e. Odd /\ q e. Odd /\ N = ( p + q ) ) ) ) |
2 |
|
2nn |
|- 2 e. NN |
3 |
2
|
a1i |
|- ( ( ( p e. Prime /\ q e. Prime ) /\ ( p e. Odd /\ q e. Odd /\ N = ( p + q ) ) ) -> 2 e. NN ) |
4 |
|
oveq2 |
|- ( d = 2 -> ( 1 ... d ) = ( 1 ... 2 ) ) |
5 |
|
df-2 |
|- 2 = ( 1 + 1 ) |
6 |
5
|
oveq2i |
|- ( 1 ... 2 ) = ( 1 ... ( 1 + 1 ) ) |
7 |
|
1z |
|- 1 e. ZZ |
8 |
|
fzpr |
|- ( 1 e. ZZ -> ( 1 ... ( 1 + 1 ) ) = { 1 , ( 1 + 1 ) } ) |
9 |
7 8
|
ax-mp |
|- ( 1 ... ( 1 + 1 ) ) = { 1 , ( 1 + 1 ) } |
10 |
|
1p1e2 |
|- ( 1 + 1 ) = 2 |
11 |
10
|
preq2i |
|- { 1 , ( 1 + 1 ) } = { 1 , 2 } |
12 |
6 9 11
|
3eqtri |
|- ( 1 ... 2 ) = { 1 , 2 } |
13 |
4 12
|
eqtrdi |
|- ( d = 2 -> ( 1 ... d ) = { 1 , 2 } ) |
14 |
13
|
oveq2d |
|- ( d = 2 -> ( Prime ^m ( 1 ... d ) ) = ( Prime ^m { 1 , 2 } ) ) |
15 |
|
breq1 |
|- ( d = 2 -> ( d <_ 3 <-> 2 <_ 3 ) ) |
16 |
13
|
sumeq1d |
|- ( d = 2 -> sum_ k e. ( 1 ... d ) ( f ` k ) = sum_ k e. { 1 , 2 } ( f ` k ) ) |
17 |
16
|
eqeq2d |
|- ( d = 2 -> ( N = sum_ k e. ( 1 ... d ) ( f ` k ) <-> N = sum_ k e. { 1 , 2 } ( f ` k ) ) ) |
18 |
15 17
|
anbi12d |
|- ( d = 2 -> ( ( d <_ 3 /\ N = sum_ k e. ( 1 ... d ) ( f ` k ) ) <-> ( 2 <_ 3 /\ N = sum_ k e. { 1 , 2 } ( f ` k ) ) ) ) |
19 |
14 18
|
rexeqbidv |
|- ( d = 2 -> ( E. f e. ( Prime ^m ( 1 ... d ) ) ( d <_ 3 /\ N = sum_ k e. ( 1 ... d ) ( f ` k ) ) <-> E. f e. ( Prime ^m { 1 , 2 } ) ( 2 <_ 3 /\ N = sum_ k e. { 1 , 2 } ( f ` k ) ) ) ) |
20 |
19
|
adantl |
|- ( ( ( ( p e. Prime /\ q e. Prime ) /\ ( p e. Odd /\ q e. Odd /\ N = ( p + q ) ) ) /\ d = 2 ) -> ( E. f e. ( Prime ^m ( 1 ... d ) ) ( d <_ 3 /\ N = sum_ k e. ( 1 ... d ) ( f ` k ) ) <-> E. f e. ( Prime ^m { 1 , 2 } ) ( 2 <_ 3 /\ N = sum_ k e. { 1 , 2 } ( f ` k ) ) ) ) |
21 |
|
1ne2 |
|- 1 =/= 2 |
22 |
|
1ex |
|- 1 e. _V |
23 |
|
2ex |
|- 2 e. _V |
24 |
|
vex |
|- p e. _V |
25 |
|
vex |
|- q e. _V |
26 |
22 23 24 25
|
fpr |
|- ( 1 =/= 2 -> { <. 1 , p >. , <. 2 , q >. } : { 1 , 2 } --> { p , q } ) |
27 |
21 26
|
mp1i |
|- ( ( p e. Prime /\ q e. Prime ) -> { <. 1 , p >. , <. 2 , q >. } : { 1 , 2 } --> { p , q } ) |
28 |
|
prssi |
|- ( ( p e. Prime /\ q e. Prime ) -> { p , q } C_ Prime ) |
29 |
27 28
|
fssd |
|- ( ( p e. Prime /\ q e. Prime ) -> { <. 1 , p >. , <. 2 , q >. } : { 1 , 2 } --> Prime ) |
30 |
|
prmex |
|- Prime e. _V |
31 |
|
prex |
|- { 1 , 2 } e. _V |
32 |
30 31
|
pm3.2i |
|- ( Prime e. _V /\ { 1 , 2 } e. _V ) |
33 |
|
elmapg |
|- ( ( Prime e. _V /\ { 1 , 2 } e. _V ) -> ( { <. 1 , p >. , <. 2 , q >. } e. ( Prime ^m { 1 , 2 } ) <-> { <. 1 , p >. , <. 2 , q >. } : { 1 , 2 } --> Prime ) ) |
34 |
32 33
|
mp1i |
|- ( ( p e. Prime /\ q e. Prime ) -> ( { <. 1 , p >. , <. 2 , q >. } e. ( Prime ^m { 1 , 2 } ) <-> { <. 1 , p >. , <. 2 , q >. } : { 1 , 2 } --> Prime ) ) |
35 |
29 34
|
mpbird |
|- ( ( p e. Prime /\ q e. Prime ) -> { <. 1 , p >. , <. 2 , q >. } e. ( Prime ^m { 1 , 2 } ) ) |
36 |
|
fveq1 |
|- ( f = { <. 1 , p >. , <. 2 , q >. } -> ( f ` k ) = ( { <. 1 , p >. , <. 2 , q >. } ` k ) ) |
37 |
36
|
adantr |
|- ( ( f = { <. 1 , p >. , <. 2 , q >. } /\ k e. { 1 , 2 } ) -> ( f ` k ) = ( { <. 1 , p >. , <. 2 , q >. } ` k ) ) |
38 |
37
|
sumeq2dv |
|- ( f = { <. 1 , p >. , <. 2 , q >. } -> sum_ k e. { 1 , 2 } ( f ` k ) = sum_ k e. { 1 , 2 } ( { <. 1 , p >. , <. 2 , q >. } ` k ) ) |
39 |
38
|
eqeq1d |
|- ( f = { <. 1 , p >. , <. 2 , q >. } -> ( sum_ k e. { 1 , 2 } ( f ` k ) = ( p + q ) <-> sum_ k e. { 1 , 2 } ( { <. 1 , p >. , <. 2 , q >. } ` k ) = ( p + q ) ) ) |
40 |
39
|
anbi2d |
|- ( f = { <. 1 , p >. , <. 2 , q >. } -> ( ( 2 <_ 3 /\ sum_ k e. { 1 , 2 } ( f ` k ) = ( p + q ) ) <-> ( 2 <_ 3 /\ sum_ k e. { 1 , 2 } ( { <. 1 , p >. , <. 2 , q >. } ` k ) = ( p + q ) ) ) ) |
41 |
40
|
adantl |
|- ( ( ( p e. Prime /\ q e. Prime ) /\ f = { <. 1 , p >. , <. 2 , q >. } ) -> ( ( 2 <_ 3 /\ sum_ k e. { 1 , 2 } ( f ` k ) = ( p + q ) ) <-> ( 2 <_ 3 /\ sum_ k e. { 1 , 2 } ( { <. 1 , p >. , <. 2 , q >. } ` k ) = ( p + q ) ) ) ) |
42 |
|
prmz |
|- ( p e. Prime -> p e. ZZ ) |
43 |
|
prmz |
|- ( q e. Prime -> q e. ZZ ) |
44 |
|
fveq2 |
|- ( k = 1 -> ( { <. 1 , p >. , <. 2 , q >. } ` k ) = ( { <. 1 , p >. , <. 2 , q >. } ` 1 ) ) |
45 |
22 24
|
fvpr1 |
|- ( 1 =/= 2 -> ( { <. 1 , p >. , <. 2 , q >. } ` 1 ) = p ) |
46 |
21 45
|
ax-mp |
|- ( { <. 1 , p >. , <. 2 , q >. } ` 1 ) = p |
47 |
44 46
|
eqtrdi |
|- ( k = 1 -> ( { <. 1 , p >. , <. 2 , q >. } ` k ) = p ) |
48 |
|
fveq2 |
|- ( k = 2 -> ( { <. 1 , p >. , <. 2 , q >. } ` k ) = ( { <. 1 , p >. , <. 2 , q >. } ` 2 ) ) |
49 |
23 25
|
fvpr2 |
|- ( 1 =/= 2 -> ( { <. 1 , p >. , <. 2 , q >. } ` 2 ) = q ) |
50 |
21 49
|
ax-mp |
|- ( { <. 1 , p >. , <. 2 , q >. } ` 2 ) = q |
51 |
48 50
|
eqtrdi |
|- ( k = 2 -> ( { <. 1 , p >. , <. 2 , q >. } ` k ) = q ) |
52 |
|
zcn |
|- ( p e. ZZ -> p e. CC ) |
53 |
|
zcn |
|- ( q e. ZZ -> q e. CC ) |
54 |
52 53
|
anim12i |
|- ( ( p e. ZZ /\ q e. ZZ ) -> ( p e. CC /\ q e. CC ) ) |
55 |
7 2
|
pm3.2i |
|- ( 1 e. ZZ /\ 2 e. NN ) |
56 |
55
|
a1i |
|- ( ( p e. ZZ /\ q e. ZZ ) -> ( 1 e. ZZ /\ 2 e. NN ) ) |
57 |
21
|
a1i |
|- ( ( p e. ZZ /\ q e. ZZ ) -> 1 =/= 2 ) |
58 |
47 51 54 56 57
|
sumpr |
|- ( ( p e. ZZ /\ q e. ZZ ) -> sum_ k e. { 1 , 2 } ( { <. 1 , p >. , <. 2 , q >. } ` k ) = ( p + q ) ) |
59 |
42 43 58
|
syl2an |
|- ( ( p e. Prime /\ q e. Prime ) -> sum_ k e. { 1 , 2 } ( { <. 1 , p >. , <. 2 , q >. } ` k ) = ( p + q ) ) |
60 |
|
2re |
|- 2 e. RR |
61 |
|
3re |
|- 3 e. RR |
62 |
|
2lt3 |
|- 2 < 3 |
63 |
60 61 62
|
ltleii |
|- 2 <_ 3 |
64 |
59 63
|
jctil |
|- ( ( p e. Prime /\ q e. Prime ) -> ( 2 <_ 3 /\ sum_ k e. { 1 , 2 } ( { <. 1 , p >. , <. 2 , q >. } ` k ) = ( p + q ) ) ) |
65 |
35 41 64
|
rspcedvd |
|- ( ( p e. Prime /\ q e. Prime ) -> E. f e. ( Prime ^m { 1 , 2 } ) ( 2 <_ 3 /\ sum_ k e. { 1 , 2 } ( f ` k ) = ( p + q ) ) ) |
66 |
65
|
adantr |
|- ( ( ( p e. Prime /\ q e. Prime ) /\ ( p e. Odd /\ q e. Odd /\ N = ( p + q ) ) ) -> E. f e. ( Prime ^m { 1 , 2 } ) ( 2 <_ 3 /\ sum_ k e. { 1 , 2 } ( f ` k ) = ( p + q ) ) ) |
67 |
|
eqeq1 |
|- ( N = ( p + q ) -> ( N = sum_ k e. { 1 , 2 } ( f ` k ) <-> ( p + q ) = sum_ k e. { 1 , 2 } ( f ` k ) ) ) |
68 |
|
eqcom |
|- ( ( p + q ) = sum_ k e. { 1 , 2 } ( f ` k ) <-> sum_ k e. { 1 , 2 } ( f ` k ) = ( p + q ) ) |
69 |
67 68
|
bitrdi |
|- ( N = ( p + q ) -> ( N = sum_ k e. { 1 , 2 } ( f ` k ) <-> sum_ k e. { 1 , 2 } ( f ` k ) = ( p + q ) ) ) |
70 |
69
|
anbi2d |
|- ( N = ( p + q ) -> ( ( 2 <_ 3 /\ N = sum_ k e. { 1 , 2 } ( f ` k ) ) <-> ( 2 <_ 3 /\ sum_ k e. { 1 , 2 } ( f ` k ) = ( p + q ) ) ) ) |
71 |
70
|
rexbidv |
|- ( N = ( p + q ) -> ( E. f e. ( Prime ^m { 1 , 2 } ) ( 2 <_ 3 /\ N = sum_ k e. { 1 , 2 } ( f ` k ) ) <-> E. f e. ( Prime ^m { 1 , 2 } ) ( 2 <_ 3 /\ sum_ k e. { 1 , 2 } ( f ` k ) = ( p + q ) ) ) ) |
72 |
71
|
3ad2ant3 |
|- ( ( p e. Odd /\ q e. Odd /\ N = ( p + q ) ) -> ( E. f e. ( Prime ^m { 1 , 2 } ) ( 2 <_ 3 /\ N = sum_ k e. { 1 , 2 } ( f ` k ) ) <-> E. f e. ( Prime ^m { 1 , 2 } ) ( 2 <_ 3 /\ sum_ k e. { 1 , 2 } ( f ` k ) = ( p + q ) ) ) ) |
73 |
72
|
adantl |
|- ( ( ( p e. Prime /\ q e. Prime ) /\ ( p e. Odd /\ q e. Odd /\ N = ( p + q ) ) ) -> ( E. f e. ( Prime ^m { 1 , 2 } ) ( 2 <_ 3 /\ N = sum_ k e. { 1 , 2 } ( f ` k ) ) <-> E. f e. ( Prime ^m { 1 , 2 } ) ( 2 <_ 3 /\ sum_ k e. { 1 , 2 } ( f ` k ) = ( p + q ) ) ) ) |
74 |
66 73
|
mpbird |
|- ( ( ( p e. Prime /\ q e. Prime ) /\ ( p e. Odd /\ q e. Odd /\ N = ( p + q ) ) ) -> E. f e. ( Prime ^m { 1 , 2 } ) ( 2 <_ 3 /\ N = sum_ k e. { 1 , 2 } ( f ` k ) ) ) |
75 |
3 20 74
|
rspcedvd |
|- ( ( ( p e. Prime /\ q e. Prime ) /\ ( p e. Odd /\ q e. Odd /\ N = ( p + q ) ) ) -> E. d e. NN E. f e. ( Prime ^m ( 1 ... d ) ) ( d <_ 3 /\ N = sum_ k e. ( 1 ... d ) ( f ` k ) ) ) |
76 |
75
|
a1d |
|- ( ( ( p e. Prime /\ q e. Prime ) /\ ( p e. Odd /\ q e. Odd /\ N = ( p + q ) ) ) -> ( N e. Even -> E. d e. NN E. f e. ( Prime ^m ( 1 ... d ) ) ( d <_ 3 /\ N = sum_ k e. ( 1 ... d ) ( f ` k ) ) ) ) |
77 |
76
|
ex |
|- ( ( p e. Prime /\ q e. Prime ) -> ( ( p e. Odd /\ q e. Odd /\ N = ( p + q ) ) -> ( N e. Even -> E. d e. NN E. f e. ( Prime ^m ( 1 ... d ) ) ( d <_ 3 /\ N = sum_ k e. ( 1 ... d ) ( f ` k ) ) ) ) ) |
78 |
77
|
rexlimivv |
|- ( E. p e. Prime E. q e. Prime ( p e. Odd /\ q e. Odd /\ N = ( p + q ) ) -> ( N e. Even -> E. d e. NN E. f e. ( Prime ^m ( 1 ... d ) ) ( d <_ 3 /\ N = sum_ k e. ( 1 ... d ) ( f ` k ) ) ) ) |
79 |
78
|
impcom |
|- ( ( N e. Even /\ E. p e. Prime E. q e. Prime ( p e. Odd /\ q e. Odd /\ N = ( p + q ) ) ) -> E. d e. NN E. f e. ( Prime ^m ( 1 ... d ) ) ( d <_ 3 /\ N = sum_ k e. ( 1 ... d ) ( f ` k ) ) ) |
80 |
1 79
|
sylbi |
|- ( N e. GoldbachEven -> E. d e. NN E. f e. ( Prime ^m ( 1 ... d ) ) ( d <_ 3 /\ N = sum_ k e. ( 1 ... d ) ( f ` k ) ) ) |