| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eluzelre |  |-  ( N e. ( ZZ>= ` 2 ) -> N e. RR ) | 
						
							| 2 |  | 8re |  |-  8 e. RR | 
						
							| 3 | 2 | a1i |  |-  ( N e. ( ZZ>= ` 2 ) -> 8 e. RR ) | 
						
							| 4 | 1 3 | leloed |  |-  ( N e. ( ZZ>= ` 2 ) -> ( N <_ 8 <-> ( N < 8 \/ N = 8 ) ) ) | 
						
							| 5 |  | eluzelz |  |-  ( N e. ( ZZ>= ` 2 ) -> N e. ZZ ) | 
						
							| 6 |  | 7nn |  |-  7 e. NN | 
						
							| 7 | 6 | nnzi |  |-  7 e. ZZ | 
						
							| 8 |  | zleltp1 |  |-  ( ( N e. ZZ /\ 7 e. ZZ ) -> ( N <_ 7 <-> N < ( 7 + 1 ) ) ) | 
						
							| 9 | 5 7 8 | sylancl |  |-  ( N e. ( ZZ>= ` 2 ) -> ( N <_ 7 <-> N < ( 7 + 1 ) ) ) | 
						
							| 10 |  | 7re |  |-  7 e. RR | 
						
							| 11 | 10 | a1i |  |-  ( N e. ( ZZ>= ` 2 ) -> 7 e. RR ) | 
						
							| 12 | 1 11 | leloed |  |-  ( N e. ( ZZ>= ` 2 ) -> ( N <_ 7 <-> ( N < 7 \/ N = 7 ) ) ) | 
						
							| 13 |  | 7p1e8 |  |-  ( 7 + 1 ) = 8 | 
						
							| 14 | 13 | breq2i |  |-  ( N < ( 7 + 1 ) <-> N < 8 ) | 
						
							| 15 | 14 | a1i |  |-  ( N e. ( ZZ>= ` 2 ) -> ( N < ( 7 + 1 ) <-> N < 8 ) ) | 
						
							| 16 | 9 12 15 | 3bitr3rd |  |-  ( N e. ( ZZ>= ` 2 ) -> ( N < 8 <-> ( N < 7 \/ N = 7 ) ) ) | 
						
							| 17 |  | 6nn |  |-  6 e. NN | 
						
							| 18 | 17 | nnzi |  |-  6 e. ZZ | 
						
							| 19 |  | zleltp1 |  |-  ( ( N e. ZZ /\ 6 e. ZZ ) -> ( N <_ 6 <-> N < ( 6 + 1 ) ) ) | 
						
							| 20 | 5 18 19 | sylancl |  |-  ( N e. ( ZZ>= ` 2 ) -> ( N <_ 6 <-> N < ( 6 + 1 ) ) ) | 
						
							| 21 |  | 6re |  |-  6 e. RR | 
						
							| 22 | 21 | a1i |  |-  ( N e. ( ZZ>= ` 2 ) -> 6 e. RR ) | 
						
							| 23 | 1 22 | leloed |  |-  ( N e. ( ZZ>= ` 2 ) -> ( N <_ 6 <-> ( N < 6 \/ N = 6 ) ) ) | 
						
							| 24 |  | 6p1e7 |  |-  ( 6 + 1 ) = 7 | 
						
							| 25 | 24 | breq2i |  |-  ( N < ( 6 + 1 ) <-> N < 7 ) | 
						
							| 26 | 25 | a1i |  |-  ( N e. ( ZZ>= ` 2 ) -> ( N < ( 6 + 1 ) <-> N < 7 ) ) | 
						
							| 27 | 20 23 26 | 3bitr3rd |  |-  ( N e. ( ZZ>= ` 2 ) -> ( N < 7 <-> ( N < 6 \/ N = 6 ) ) ) | 
						
							| 28 |  | 5nn |  |-  5 e. NN | 
						
							| 29 | 28 | nnzi |  |-  5 e. ZZ | 
						
							| 30 |  | zleltp1 |  |-  ( ( N e. ZZ /\ 5 e. ZZ ) -> ( N <_ 5 <-> N < ( 5 + 1 ) ) ) | 
						
							| 31 | 5 29 30 | sylancl |  |-  ( N e. ( ZZ>= ` 2 ) -> ( N <_ 5 <-> N < ( 5 + 1 ) ) ) | 
						
							| 32 |  | 5re |  |-  5 e. RR | 
						
							| 33 | 32 | a1i |  |-  ( N e. ( ZZ>= ` 2 ) -> 5 e. RR ) | 
						
							| 34 | 1 33 | leloed |  |-  ( N e. ( ZZ>= ` 2 ) -> ( N <_ 5 <-> ( N < 5 \/ N = 5 ) ) ) | 
						
							| 35 |  | 5p1e6 |  |-  ( 5 + 1 ) = 6 | 
						
							| 36 | 35 | breq2i |  |-  ( N < ( 5 + 1 ) <-> N < 6 ) | 
						
							| 37 | 36 | a1i |  |-  ( N e. ( ZZ>= ` 2 ) -> ( N < ( 5 + 1 ) <-> N < 6 ) ) | 
						
							| 38 | 31 34 37 | 3bitr3rd |  |-  ( N e. ( ZZ>= ` 2 ) -> ( N < 6 <-> ( N < 5 \/ N = 5 ) ) ) | 
						
							| 39 |  | 4z |  |-  4 e. ZZ | 
						
							| 40 |  | zleltp1 |  |-  ( ( N e. ZZ /\ 4 e. ZZ ) -> ( N <_ 4 <-> N < ( 4 + 1 ) ) ) | 
						
							| 41 | 5 39 40 | sylancl |  |-  ( N e. ( ZZ>= ` 2 ) -> ( N <_ 4 <-> N < ( 4 + 1 ) ) ) | 
						
							| 42 |  | 4re |  |-  4 e. RR | 
						
							| 43 | 42 | a1i |  |-  ( N e. ( ZZ>= ` 2 ) -> 4 e. RR ) | 
						
							| 44 | 1 43 | leloed |  |-  ( N e. ( ZZ>= ` 2 ) -> ( N <_ 4 <-> ( N < 4 \/ N = 4 ) ) ) | 
						
							| 45 |  | 4p1e5 |  |-  ( 4 + 1 ) = 5 | 
						
							| 46 | 45 | breq2i |  |-  ( N < ( 4 + 1 ) <-> N < 5 ) | 
						
							| 47 | 46 | a1i |  |-  ( N e. ( ZZ>= ` 2 ) -> ( N < ( 4 + 1 ) <-> N < 5 ) ) | 
						
							| 48 | 41 44 47 | 3bitr3rd |  |-  ( N e. ( ZZ>= ` 2 ) -> ( N < 5 <-> ( N < 4 \/ N = 4 ) ) ) | 
						
							| 49 |  | 3z |  |-  3 e. ZZ | 
						
							| 50 |  | zleltp1 |  |-  ( ( N e. ZZ /\ 3 e. ZZ ) -> ( N <_ 3 <-> N < ( 3 + 1 ) ) ) | 
						
							| 51 | 5 49 50 | sylancl |  |-  ( N e. ( ZZ>= ` 2 ) -> ( N <_ 3 <-> N < ( 3 + 1 ) ) ) | 
						
							| 52 |  | 3re |  |-  3 e. RR | 
						
							| 53 | 52 | a1i |  |-  ( N e. ( ZZ>= ` 2 ) -> 3 e. RR ) | 
						
							| 54 | 1 53 | leloed |  |-  ( N e. ( ZZ>= ` 2 ) -> ( N <_ 3 <-> ( N < 3 \/ N = 3 ) ) ) | 
						
							| 55 |  | 3p1e4 |  |-  ( 3 + 1 ) = 4 | 
						
							| 56 | 55 | breq2i |  |-  ( N < ( 3 + 1 ) <-> N < 4 ) | 
						
							| 57 | 56 | a1i |  |-  ( N e. ( ZZ>= ` 2 ) -> ( N < ( 3 + 1 ) <-> N < 4 ) ) | 
						
							| 58 | 51 54 57 | 3bitr3rd |  |-  ( N e. ( ZZ>= ` 2 ) -> ( N < 4 <-> ( N < 3 \/ N = 3 ) ) ) | 
						
							| 59 |  | eluz2 |  |-  ( N e. ( ZZ>= ` 2 ) <-> ( 2 e. ZZ /\ N e. ZZ /\ 2 <_ N ) ) | 
						
							| 60 |  | 2re |  |-  2 e. RR | 
						
							| 61 | 60 | a1i |  |-  ( N e. ZZ -> 2 e. RR ) | 
						
							| 62 |  | zre |  |-  ( N e. ZZ -> N e. RR ) | 
						
							| 63 | 61 62 | leloed |  |-  ( N e. ZZ -> ( 2 <_ N <-> ( 2 < N \/ 2 = N ) ) ) | 
						
							| 64 |  | 3m1e2 |  |-  ( 3 - 1 ) = 2 | 
						
							| 65 | 64 | eqcomi |  |-  2 = ( 3 - 1 ) | 
						
							| 66 | 65 | breq1i |  |-  ( 2 < N <-> ( 3 - 1 ) < N ) | 
						
							| 67 |  | zlem1lt |  |-  ( ( 3 e. ZZ /\ N e. ZZ ) -> ( 3 <_ N <-> ( 3 - 1 ) < N ) ) | 
						
							| 68 | 49 67 | mpan |  |-  ( N e. ZZ -> ( 3 <_ N <-> ( 3 - 1 ) < N ) ) | 
						
							| 69 | 68 | biimprd |  |-  ( N e. ZZ -> ( ( 3 - 1 ) < N -> 3 <_ N ) ) | 
						
							| 70 | 66 69 | biimtrid |  |-  ( N e. ZZ -> ( 2 < N -> 3 <_ N ) ) | 
						
							| 71 | 52 | a1i |  |-  ( N e. ZZ -> 3 e. RR ) | 
						
							| 72 | 71 62 | lenltd |  |-  ( N e. ZZ -> ( 3 <_ N <-> -. N < 3 ) ) | 
						
							| 73 |  | pm2.21 |  |-  ( -. N < 3 -> ( N < 3 -> N = 2 ) ) | 
						
							| 74 | 72 73 | biimtrdi |  |-  ( N e. ZZ -> ( 3 <_ N -> ( N < 3 -> N = 2 ) ) ) | 
						
							| 75 | 70 74 | syldc |  |-  ( 2 < N -> ( N e. ZZ -> ( N < 3 -> N = 2 ) ) ) | 
						
							| 76 |  | eqcom |  |-  ( 2 = N <-> N = 2 ) | 
						
							| 77 | 76 | biimpi |  |-  ( 2 = N -> N = 2 ) | 
						
							| 78 | 77 | 2a1d |  |-  ( 2 = N -> ( N e. ZZ -> ( N < 3 -> N = 2 ) ) ) | 
						
							| 79 | 75 78 | jaoi |  |-  ( ( 2 < N \/ 2 = N ) -> ( N e. ZZ -> ( N < 3 -> N = 2 ) ) ) | 
						
							| 80 | 79 | com12 |  |-  ( N e. ZZ -> ( ( 2 < N \/ 2 = N ) -> ( N < 3 -> N = 2 ) ) ) | 
						
							| 81 | 63 80 | sylbid |  |-  ( N e. ZZ -> ( 2 <_ N -> ( N < 3 -> N = 2 ) ) ) | 
						
							| 82 | 81 | imp |  |-  ( ( N e. ZZ /\ 2 <_ N ) -> ( N < 3 -> N = 2 ) ) | 
						
							| 83 |  | 2lt3 |  |-  2 < 3 | 
						
							| 84 |  | breq1 |  |-  ( N = 2 -> ( N < 3 <-> 2 < 3 ) ) | 
						
							| 85 | 83 84 | mpbiri |  |-  ( N = 2 -> N < 3 ) | 
						
							| 86 | 82 85 | impbid1 |  |-  ( ( N e. ZZ /\ 2 <_ N ) -> ( N < 3 <-> N = 2 ) ) | 
						
							| 87 | 86 | 3adant1 |  |-  ( ( 2 e. ZZ /\ N e. ZZ /\ 2 <_ N ) -> ( N < 3 <-> N = 2 ) ) | 
						
							| 88 | 59 87 | sylbi |  |-  ( N e. ( ZZ>= ` 2 ) -> ( N < 3 <-> N = 2 ) ) | 
						
							| 89 | 88 | orbi1d |  |-  ( N e. ( ZZ>= ` 2 ) -> ( ( N < 3 \/ N = 3 ) <-> ( N = 2 \/ N = 3 ) ) ) | 
						
							| 90 | 58 89 | bitrd |  |-  ( N e. ( ZZ>= ` 2 ) -> ( N < 4 <-> ( N = 2 \/ N = 3 ) ) ) | 
						
							| 91 | 90 | orbi1d |  |-  ( N e. ( ZZ>= ` 2 ) -> ( ( N < 4 \/ N = 4 ) <-> ( ( N = 2 \/ N = 3 ) \/ N = 4 ) ) ) | 
						
							| 92 | 48 91 | bitrd |  |-  ( N e. ( ZZ>= ` 2 ) -> ( N < 5 <-> ( ( N = 2 \/ N = 3 ) \/ N = 4 ) ) ) | 
						
							| 93 | 92 | orbi1d |  |-  ( N e. ( ZZ>= ` 2 ) -> ( ( N < 5 \/ N = 5 ) <-> ( ( ( N = 2 \/ N = 3 ) \/ N = 4 ) \/ N = 5 ) ) ) | 
						
							| 94 | 38 93 | bitrd |  |-  ( N e. ( ZZ>= ` 2 ) -> ( N < 6 <-> ( ( ( N = 2 \/ N = 3 ) \/ N = 4 ) \/ N = 5 ) ) ) | 
						
							| 95 | 94 | orbi1d |  |-  ( N e. ( ZZ>= ` 2 ) -> ( ( N < 6 \/ N = 6 ) <-> ( ( ( ( N = 2 \/ N = 3 ) \/ N = 4 ) \/ N = 5 ) \/ N = 6 ) ) ) | 
						
							| 96 | 27 95 | bitrd |  |-  ( N e. ( ZZ>= ` 2 ) -> ( N < 7 <-> ( ( ( ( N = 2 \/ N = 3 ) \/ N = 4 ) \/ N = 5 ) \/ N = 6 ) ) ) | 
						
							| 97 | 96 | orbi1d |  |-  ( N e. ( ZZ>= ` 2 ) -> ( ( N < 7 \/ N = 7 ) <-> ( ( ( ( ( N = 2 \/ N = 3 ) \/ N = 4 ) \/ N = 5 ) \/ N = 6 ) \/ N = 7 ) ) ) | 
						
							| 98 | 16 97 | bitrd |  |-  ( N e. ( ZZ>= ` 2 ) -> ( N < 8 <-> ( ( ( ( ( N = 2 \/ N = 3 ) \/ N = 4 ) \/ N = 5 ) \/ N = 6 ) \/ N = 7 ) ) ) | 
						
							| 99 | 98 | orbi1d |  |-  ( N e. ( ZZ>= ` 2 ) -> ( ( N < 8 \/ N = 8 ) <-> ( ( ( ( ( ( N = 2 \/ N = 3 ) \/ N = 4 ) \/ N = 5 ) \/ N = 6 ) \/ N = 7 ) \/ N = 8 ) ) ) | 
						
							| 100 | 99 | biimpd |  |-  ( N e. ( ZZ>= ` 2 ) -> ( ( N < 8 \/ N = 8 ) -> ( ( ( ( ( ( N = 2 \/ N = 3 ) \/ N = 4 ) \/ N = 5 ) \/ N = 6 ) \/ N = 7 ) \/ N = 8 ) ) ) | 
						
							| 101 | 4 100 | sylbid |  |-  ( N e. ( ZZ>= ` 2 ) -> ( N <_ 8 -> ( ( ( ( ( ( N = 2 \/ N = 3 ) \/ N = 4 ) \/ N = 5 ) \/ N = 6 ) \/ N = 7 ) \/ N = 8 ) ) ) | 
						
							| 102 | 101 | imp |  |-  ( ( N e. ( ZZ>= ` 2 ) /\ N <_ 8 ) -> ( ( ( ( ( ( N = 2 \/ N = 3 ) \/ N = 4 ) \/ N = 5 ) \/ N = 6 ) \/ N = 7 ) \/ N = 8 ) ) | 
						
							| 103 |  | 2prm |  |-  2 e. Prime | 
						
							| 104 |  | eleq1 |  |-  ( N = 2 -> ( N e. Prime <-> 2 e. Prime ) ) | 
						
							| 105 | 103 104 | mpbiri |  |-  ( N = 2 -> N e. Prime ) | 
						
							| 106 |  | nnsum3primesprm |  |-  ( N e. Prime -> E. d e. NN E. f e. ( Prime ^m ( 1 ... d ) ) ( d <_ 3 /\ N = sum_ k e. ( 1 ... d ) ( f ` k ) ) ) | 
						
							| 107 | 105 106 | syl |  |-  ( N = 2 -> E. d e. NN E. f e. ( Prime ^m ( 1 ... d ) ) ( d <_ 3 /\ N = sum_ k e. ( 1 ... d ) ( f ` k ) ) ) | 
						
							| 108 |  | 3prm |  |-  3 e. Prime | 
						
							| 109 |  | eleq1 |  |-  ( N = 3 -> ( N e. Prime <-> 3 e. Prime ) ) | 
						
							| 110 | 108 109 | mpbiri |  |-  ( N = 3 -> N e. Prime ) | 
						
							| 111 | 110 106 | syl |  |-  ( N = 3 -> E. d e. NN E. f e. ( Prime ^m ( 1 ... d ) ) ( d <_ 3 /\ N = sum_ k e. ( 1 ... d ) ( f ` k ) ) ) | 
						
							| 112 | 107 111 | jaoi |  |-  ( ( N = 2 \/ N = 3 ) -> E. d e. NN E. f e. ( Prime ^m ( 1 ... d ) ) ( d <_ 3 /\ N = sum_ k e. ( 1 ... d ) ( f ` k ) ) ) | 
						
							| 113 |  | nnsum3primes4 |  |-  E. d e. NN E. f e. ( Prime ^m ( 1 ... d ) ) ( d <_ 3 /\ 4 = sum_ k e. ( 1 ... d ) ( f ` k ) ) | 
						
							| 114 |  | eqeq1 |  |-  ( N = 4 -> ( N = sum_ k e. ( 1 ... d ) ( f ` k ) <-> 4 = sum_ k e. ( 1 ... d ) ( f ` k ) ) ) | 
						
							| 115 | 114 | anbi2d |  |-  ( N = 4 -> ( ( d <_ 3 /\ N = sum_ k e. ( 1 ... d ) ( f ` k ) ) <-> ( d <_ 3 /\ 4 = sum_ k e. ( 1 ... d ) ( f ` k ) ) ) ) | 
						
							| 116 | 115 | 2rexbidv |  |-  ( N = 4 -> ( E. d e. NN E. f e. ( Prime ^m ( 1 ... d ) ) ( d <_ 3 /\ N = sum_ k e. ( 1 ... d ) ( f ` k ) ) <-> E. d e. NN E. f e. ( Prime ^m ( 1 ... d ) ) ( d <_ 3 /\ 4 = sum_ k e. ( 1 ... d ) ( f ` k ) ) ) ) | 
						
							| 117 | 113 116 | mpbiri |  |-  ( N = 4 -> E. d e. NN E. f e. ( Prime ^m ( 1 ... d ) ) ( d <_ 3 /\ N = sum_ k e. ( 1 ... d ) ( f ` k ) ) ) | 
						
							| 118 | 112 117 | jaoi |  |-  ( ( ( N = 2 \/ N = 3 ) \/ N = 4 ) -> E. d e. NN E. f e. ( Prime ^m ( 1 ... d ) ) ( d <_ 3 /\ N = sum_ k e. ( 1 ... d ) ( f ` k ) ) ) | 
						
							| 119 |  | 5prm |  |-  5 e. Prime | 
						
							| 120 |  | eleq1 |  |-  ( N = 5 -> ( N e. Prime <-> 5 e. Prime ) ) | 
						
							| 121 | 119 120 | mpbiri |  |-  ( N = 5 -> N e. Prime ) | 
						
							| 122 | 121 106 | syl |  |-  ( N = 5 -> E. d e. NN E. f e. ( Prime ^m ( 1 ... d ) ) ( d <_ 3 /\ N = sum_ k e. ( 1 ... d ) ( f ` k ) ) ) | 
						
							| 123 | 118 122 | jaoi |  |-  ( ( ( ( N = 2 \/ N = 3 ) \/ N = 4 ) \/ N = 5 ) -> E. d e. NN E. f e. ( Prime ^m ( 1 ... d ) ) ( d <_ 3 /\ N = sum_ k e. ( 1 ... d ) ( f ` k ) ) ) | 
						
							| 124 |  | 6gbe |  |-  6 e. GoldbachEven | 
						
							| 125 |  | eleq1 |  |-  ( N = 6 -> ( N e. GoldbachEven <-> 6 e. GoldbachEven ) ) | 
						
							| 126 | 124 125 | mpbiri |  |-  ( N = 6 -> N e. GoldbachEven ) | 
						
							| 127 |  | nnsum3primesgbe |  |-  ( N e. GoldbachEven -> E. d e. NN E. f e. ( Prime ^m ( 1 ... d ) ) ( d <_ 3 /\ N = sum_ k e. ( 1 ... d ) ( f ` k ) ) ) | 
						
							| 128 | 126 127 | syl |  |-  ( N = 6 -> E. d e. NN E. f e. ( Prime ^m ( 1 ... d ) ) ( d <_ 3 /\ N = sum_ k e. ( 1 ... d ) ( f ` k ) ) ) | 
						
							| 129 | 123 128 | jaoi |  |-  ( ( ( ( ( N = 2 \/ N = 3 ) \/ N = 4 ) \/ N = 5 ) \/ N = 6 ) -> E. d e. NN E. f e. ( Prime ^m ( 1 ... d ) ) ( d <_ 3 /\ N = sum_ k e. ( 1 ... d ) ( f ` k ) ) ) | 
						
							| 130 |  | 7prm |  |-  7 e. Prime | 
						
							| 131 |  | eleq1 |  |-  ( N = 7 -> ( N e. Prime <-> 7 e. Prime ) ) | 
						
							| 132 | 130 131 | mpbiri |  |-  ( N = 7 -> N e. Prime ) | 
						
							| 133 | 132 106 | syl |  |-  ( N = 7 -> E. d e. NN E. f e. ( Prime ^m ( 1 ... d ) ) ( d <_ 3 /\ N = sum_ k e. ( 1 ... d ) ( f ` k ) ) ) | 
						
							| 134 | 129 133 | jaoi |  |-  ( ( ( ( ( ( N = 2 \/ N = 3 ) \/ N = 4 ) \/ N = 5 ) \/ N = 6 ) \/ N = 7 ) -> E. d e. NN E. f e. ( Prime ^m ( 1 ... d ) ) ( d <_ 3 /\ N = sum_ k e. ( 1 ... d ) ( f ` k ) ) ) | 
						
							| 135 |  | 8gbe |  |-  8 e. GoldbachEven | 
						
							| 136 |  | eleq1 |  |-  ( N = 8 -> ( N e. GoldbachEven <-> 8 e. GoldbachEven ) ) | 
						
							| 137 | 135 136 | mpbiri |  |-  ( N = 8 -> N e. GoldbachEven ) | 
						
							| 138 | 137 127 | syl |  |-  ( N = 8 -> E. d e. NN E. f e. ( Prime ^m ( 1 ... d ) ) ( d <_ 3 /\ N = sum_ k e. ( 1 ... d ) ( f ` k ) ) ) | 
						
							| 139 | 134 138 | jaoi |  |-  ( ( ( ( ( ( ( N = 2 \/ N = 3 ) \/ N = 4 ) \/ N = 5 ) \/ N = 6 ) \/ N = 7 ) \/ N = 8 ) -> E. d e. NN E. f e. ( Prime ^m ( 1 ... d ) ) ( d <_ 3 /\ N = sum_ k e. ( 1 ... d ) ( f ` k ) ) ) | 
						
							| 140 | 102 139 | syl |  |-  ( ( N e. ( ZZ>= ` 2 ) /\ N <_ 8 ) -> E. d e. NN E. f e. ( Prime ^m ( 1 ... d ) ) ( d <_ 3 /\ N = sum_ k e. ( 1 ... d ) ( f ` k ) ) ) |