Step |
Hyp |
Ref |
Expression |
1 |
|
1nn |
|- 1 e. NN |
2 |
|
1zzd |
|- ( P e. Prime -> 1 e. ZZ ) |
3 |
|
id |
|- ( P e. Prime -> P e. Prime ) |
4 |
2 3
|
fsnd |
|- ( P e. Prime -> { <. 1 , P >. } : { 1 } --> Prime ) |
5 |
|
prmex |
|- Prime e. _V |
6 |
|
snex |
|- { 1 } e. _V |
7 |
5 6
|
elmap |
|- ( { <. 1 , P >. } e. ( Prime ^m { 1 } ) <-> { <. 1 , P >. } : { 1 } --> Prime ) |
8 |
4 7
|
sylibr |
|- ( P e. Prime -> { <. 1 , P >. } e. ( Prime ^m { 1 } ) ) |
9 |
|
1re |
|- 1 e. RR |
10 |
|
simpl |
|- ( ( P e. Prime /\ k e. { 1 } ) -> P e. Prime ) |
11 |
|
fvsng |
|- ( ( 1 e. RR /\ P e. Prime ) -> ( { <. 1 , P >. } ` 1 ) = P ) |
12 |
9 10 11
|
sylancr |
|- ( ( P e. Prime /\ k e. { 1 } ) -> ( { <. 1 , P >. } ` 1 ) = P ) |
13 |
12
|
sumeq2dv |
|- ( P e. Prime -> sum_ k e. { 1 } ( { <. 1 , P >. } ` 1 ) = sum_ k e. { 1 } P ) |
14 |
|
prmz |
|- ( P e. Prime -> P e. ZZ ) |
15 |
14
|
zcnd |
|- ( P e. Prime -> P e. CC ) |
16 |
|
eqidd |
|- ( k = 1 -> P = P ) |
17 |
16
|
sumsn |
|- ( ( 1 e. RR /\ P e. CC ) -> sum_ k e. { 1 } P = P ) |
18 |
9 15 17
|
sylancr |
|- ( P e. Prime -> sum_ k e. { 1 } P = P ) |
19 |
13 18
|
eqtr2d |
|- ( P e. Prime -> P = sum_ k e. { 1 } ( { <. 1 , P >. } ` 1 ) ) |
20 |
|
1le3 |
|- 1 <_ 3 |
21 |
19 20
|
jctil |
|- ( P e. Prime -> ( 1 <_ 3 /\ P = sum_ k e. { 1 } ( { <. 1 , P >. } ` 1 ) ) ) |
22 |
|
simpl |
|- ( ( f = { <. 1 , P >. } /\ k e. { 1 } ) -> f = { <. 1 , P >. } ) |
23 |
|
elsni |
|- ( k e. { 1 } -> k = 1 ) |
24 |
23
|
adantl |
|- ( ( f = { <. 1 , P >. } /\ k e. { 1 } ) -> k = 1 ) |
25 |
22 24
|
fveq12d |
|- ( ( f = { <. 1 , P >. } /\ k e. { 1 } ) -> ( f ` k ) = ( { <. 1 , P >. } ` 1 ) ) |
26 |
25
|
sumeq2dv |
|- ( f = { <. 1 , P >. } -> sum_ k e. { 1 } ( f ` k ) = sum_ k e. { 1 } ( { <. 1 , P >. } ` 1 ) ) |
27 |
26
|
eqeq2d |
|- ( f = { <. 1 , P >. } -> ( P = sum_ k e. { 1 } ( f ` k ) <-> P = sum_ k e. { 1 } ( { <. 1 , P >. } ` 1 ) ) ) |
28 |
27
|
anbi2d |
|- ( f = { <. 1 , P >. } -> ( ( 1 <_ 3 /\ P = sum_ k e. { 1 } ( f ` k ) ) <-> ( 1 <_ 3 /\ P = sum_ k e. { 1 } ( { <. 1 , P >. } ` 1 ) ) ) ) |
29 |
28
|
rspcev |
|- ( ( { <. 1 , P >. } e. ( Prime ^m { 1 } ) /\ ( 1 <_ 3 /\ P = sum_ k e. { 1 } ( { <. 1 , P >. } ` 1 ) ) ) -> E. f e. ( Prime ^m { 1 } ) ( 1 <_ 3 /\ P = sum_ k e. { 1 } ( f ` k ) ) ) |
30 |
8 21 29
|
syl2anc |
|- ( P e. Prime -> E. f e. ( Prime ^m { 1 } ) ( 1 <_ 3 /\ P = sum_ k e. { 1 } ( f ` k ) ) ) |
31 |
|
oveq2 |
|- ( d = 1 -> ( 1 ... d ) = ( 1 ... 1 ) ) |
32 |
|
1z |
|- 1 e. ZZ |
33 |
|
fzsn |
|- ( 1 e. ZZ -> ( 1 ... 1 ) = { 1 } ) |
34 |
32 33
|
ax-mp |
|- ( 1 ... 1 ) = { 1 } |
35 |
31 34
|
eqtrdi |
|- ( d = 1 -> ( 1 ... d ) = { 1 } ) |
36 |
35
|
oveq2d |
|- ( d = 1 -> ( Prime ^m ( 1 ... d ) ) = ( Prime ^m { 1 } ) ) |
37 |
|
breq1 |
|- ( d = 1 -> ( d <_ 3 <-> 1 <_ 3 ) ) |
38 |
35
|
sumeq1d |
|- ( d = 1 -> sum_ k e. ( 1 ... d ) ( f ` k ) = sum_ k e. { 1 } ( f ` k ) ) |
39 |
38
|
eqeq2d |
|- ( d = 1 -> ( P = sum_ k e. ( 1 ... d ) ( f ` k ) <-> P = sum_ k e. { 1 } ( f ` k ) ) ) |
40 |
37 39
|
anbi12d |
|- ( d = 1 -> ( ( d <_ 3 /\ P = sum_ k e. ( 1 ... d ) ( f ` k ) ) <-> ( 1 <_ 3 /\ P = sum_ k e. { 1 } ( f ` k ) ) ) ) |
41 |
36 40
|
rexeqbidv |
|- ( d = 1 -> ( E. f e. ( Prime ^m ( 1 ... d ) ) ( d <_ 3 /\ P = sum_ k e. ( 1 ... d ) ( f ` k ) ) <-> E. f e. ( Prime ^m { 1 } ) ( 1 <_ 3 /\ P = sum_ k e. { 1 } ( f ` k ) ) ) ) |
42 |
41
|
rspcev |
|- ( ( 1 e. NN /\ E. f e. ( Prime ^m { 1 } ) ( 1 <_ 3 /\ P = sum_ k e. { 1 } ( f ` k ) ) ) -> E. d e. NN E. f e. ( Prime ^m ( 1 ... d ) ) ( d <_ 3 /\ P = sum_ k e. ( 1 ... d ) ( f ` k ) ) ) |
43 |
1 30 42
|
sylancr |
|- ( P e. Prime -> E. d e. NN E. f e. ( Prime ^m ( 1 ... d ) ) ( d <_ 3 /\ P = sum_ k e. ( 1 ... d ) ( f ` k ) ) ) |