| Step | Hyp | Ref | Expression | 
						
							| 1 |  | breq2 |  |-  ( m = N -> ( 7 < m <-> 7 < N ) ) | 
						
							| 2 |  | eleq1 |  |-  ( m = N -> ( m e. GoldbachOdd <-> N e. GoldbachOdd ) ) | 
						
							| 3 | 1 2 | imbi12d |  |-  ( m = N -> ( ( 7 < m -> m e. GoldbachOdd ) <-> ( 7 < N -> N e. GoldbachOdd ) ) ) | 
						
							| 4 | 3 | rspcv |  |-  ( N e. Odd -> ( A. m e. Odd ( 7 < m -> m e. GoldbachOdd ) -> ( 7 < N -> N e. GoldbachOdd ) ) ) | 
						
							| 5 | 4 | adantl |  |-  ( ( N e. ( ZZ>= ` 8 ) /\ N e. Odd ) -> ( A. m e. Odd ( 7 < m -> m e. GoldbachOdd ) -> ( 7 < N -> N e. GoldbachOdd ) ) ) | 
						
							| 6 |  | eluz2 |  |-  ( N e. ( ZZ>= ` 8 ) <-> ( 8 e. ZZ /\ N e. ZZ /\ 8 <_ N ) ) | 
						
							| 7 |  | 7lt8 |  |-  7 < 8 | 
						
							| 8 |  | 7re |  |-  7 e. RR | 
						
							| 9 | 8 | a1i |  |-  ( N e. ZZ -> 7 e. RR ) | 
						
							| 10 |  | 8re |  |-  8 e. RR | 
						
							| 11 | 10 | a1i |  |-  ( N e. ZZ -> 8 e. RR ) | 
						
							| 12 |  | zre |  |-  ( N e. ZZ -> N e. RR ) | 
						
							| 13 |  | ltletr |  |-  ( ( 7 e. RR /\ 8 e. RR /\ N e. RR ) -> ( ( 7 < 8 /\ 8 <_ N ) -> 7 < N ) ) | 
						
							| 14 | 9 11 12 13 | syl3anc |  |-  ( N e. ZZ -> ( ( 7 < 8 /\ 8 <_ N ) -> 7 < N ) ) | 
						
							| 15 | 7 14 | mpani |  |-  ( N e. ZZ -> ( 8 <_ N -> 7 < N ) ) | 
						
							| 16 | 15 | imp |  |-  ( ( N e. ZZ /\ 8 <_ N ) -> 7 < N ) | 
						
							| 17 | 16 | 3adant1 |  |-  ( ( 8 e. ZZ /\ N e. ZZ /\ 8 <_ N ) -> 7 < N ) | 
						
							| 18 | 6 17 | sylbi |  |-  ( N e. ( ZZ>= ` 8 ) -> 7 < N ) | 
						
							| 19 | 18 | adantr |  |-  ( ( N e. ( ZZ>= ` 8 ) /\ N e. Odd ) -> 7 < N ) | 
						
							| 20 |  | pm2.27 |  |-  ( 7 < N -> ( ( 7 < N -> N e. GoldbachOdd ) -> N e. GoldbachOdd ) ) | 
						
							| 21 | 19 20 | syl |  |-  ( ( N e. ( ZZ>= ` 8 ) /\ N e. Odd ) -> ( ( 7 < N -> N e. GoldbachOdd ) -> N e. GoldbachOdd ) ) | 
						
							| 22 |  | isgbo |  |-  ( N e. GoldbachOdd <-> ( N e. Odd /\ E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ N = ( ( p + q ) + r ) ) ) ) | 
						
							| 23 |  | 1ex |  |-  1 e. _V | 
						
							| 24 |  | 2ex |  |-  2 e. _V | 
						
							| 25 |  | 3ex |  |-  3 e. _V | 
						
							| 26 |  | vex |  |-  p e. _V | 
						
							| 27 |  | vex |  |-  q e. _V | 
						
							| 28 |  | vex |  |-  r e. _V | 
						
							| 29 |  | 1ne2 |  |-  1 =/= 2 | 
						
							| 30 |  | 1re |  |-  1 e. RR | 
						
							| 31 |  | 1lt3 |  |-  1 < 3 | 
						
							| 32 | 30 31 | ltneii |  |-  1 =/= 3 | 
						
							| 33 |  | 2re |  |-  2 e. RR | 
						
							| 34 |  | 2lt3 |  |-  2 < 3 | 
						
							| 35 | 33 34 | ltneii |  |-  2 =/= 3 | 
						
							| 36 | 23 24 25 26 27 28 29 32 35 | ftp |  |-  { <. 1 , p >. , <. 2 , q >. , <. 3 , r >. } : { 1 , 2 , 3 } --> { p , q , r } | 
						
							| 37 | 36 | a1i |  |-  ( ( ( p e. Prime /\ q e. Prime ) /\ r e. Prime ) -> { <. 1 , p >. , <. 2 , q >. , <. 3 , r >. } : { 1 , 2 , 3 } --> { p , q , r } ) | 
						
							| 38 |  | 1p2e3 |  |-  ( 1 + 2 ) = 3 | 
						
							| 39 | 38 | eqcomi |  |-  3 = ( 1 + 2 ) | 
						
							| 40 | 39 | oveq2i |  |-  ( 1 ... 3 ) = ( 1 ... ( 1 + 2 ) ) | 
						
							| 41 |  | 1z |  |-  1 e. ZZ | 
						
							| 42 |  | fztp |  |-  ( 1 e. ZZ -> ( 1 ... ( 1 + 2 ) ) = { 1 , ( 1 + 1 ) , ( 1 + 2 ) } ) | 
						
							| 43 | 41 42 | ax-mp |  |-  ( 1 ... ( 1 + 2 ) ) = { 1 , ( 1 + 1 ) , ( 1 + 2 ) } | 
						
							| 44 |  | eqid |  |-  1 = 1 | 
						
							| 45 |  | id |  |-  ( 1 = 1 -> 1 = 1 ) | 
						
							| 46 |  | 1p1e2 |  |-  ( 1 + 1 ) = 2 | 
						
							| 47 | 46 | a1i |  |-  ( 1 = 1 -> ( 1 + 1 ) = 2 ) | 
						
							| 48 | 38 | a1i |  |-  ( 1 = 1 -> ( 1 + 2 ) = 3 ) | 
						
							| 49 | 45 47 48 | tpeq123d |  |-  ( 1 = 1 -> { 1 , ( 1 + 1 ) , ( 1 + 2 ) } = { 1 , 2 , 3 } ) | 
						
							| 50 | 44 49 | ax-mp |  |-  { 1 , ( 1 + 1 ) , ( 1 + 2 ) } = { 1 , 2 , 3 } | 
						
							| 51 | 40 43 50 | 3eqtri |  |-  ( 1 ... 3 ) = { 1 , 2 , 3 } | 
						
							| 52 | 51 | feq2i |  |-  ( { <. 1 , p >. , <. 2 , q >. , <. 3 , r >. } : ( 1 ... 3 ) --> { p , q , r } <-> { <. 1 , p >. , <. 2 , q >. , <. 3 , r >. } : { 1 , 2 , 3 } --> { p , q , r } ) | 
						
							| 53 | 37 52 | sylibr |  |-  ( ( ( p e. Prime /\ q e. Prime ) /\ r e. Prime ) -> { <. 1 , p >. , <. 2 , q >. , <. 3 , r >. } : ( 1 ... 3 ) --> { p , q , r } ) | 
						
							| 54 |  | df-3an |  |-  ( ( p e. Prime /\ q e. Prime /\ r e. Prime ) <-> ( ( p e. Prime /\ q e. Prime ) /\ r e. Prime ) ) | 
						
							| 55 | 26 27 28 | tpss |  |-  ( ( p e. Prime /\ q e. Prime /\ r e. Prime ) <-> { p , q , r } C_ Prime ) | 
						
							| 56 | 54 55 | sylbb1 |  |-  ( ( ( p e. Prime /\ q e. Prime ) /\ r e. Prime ) -> { p , q , r } C_ Prime ) | 
						
							| 57 | 53 56 | fssd |  |-  ( ( ( p e. Prime /\ q e. Prime ) /\ r e. Prime ) -> { <. 1 , p >. , <. 2 , q >. , <. 3 , r >. } : ( 1 ... 3 ) --> Prime ) | 
						
							| 58 |  | prmex |  |-  Prime e. _V | 
						
							| 59 |  | ovex |  |-  ( 1 ... 3 ) e. _V | 
						
							| 60 | 58 59 | pm3.2i |  |-  ( Prime e. _V /\ ( 1 ... 3 ) e. _V ) | 
						
							| 61 |  | elmapg |  |-  ( ( Prime e. _V /\ ( 1 ... 3 ) e. _V ) -> ( { <. 1 , p >. , <. 2 , q >. , <. 3 , r >. } e. ( Prime ^m ( 1 ... 3 ) ) <-> { <. 1 , p >. , <. 2 , q >. , <. 3 , r >. } : ( 1 ... 3 ) --> Prime ) ) | 
						
							| 62 | 60 61 | mp1i |  |-  ( ( ( p e. Prime /\ q e. Prime ) /\ r e. Prime ) -> ( { <. 1 , p >. , <. 2 , q >. , <. 3 , r >. } e. ( Prime ^m ( 1 ... 3 ) ) <-> { <. 1 , p >. , <. 2 , q >. , <. 3 , r >. } : ( 1 ... 3 ) --> Prime ) ) | 
						
							| 63 | 57 62 | mpbird |  |-  ( ( ( p e. Prime /\ q e. Prime ) /\ r e. Prime ) -> { <. 1 , p >. , <. 2 , q >. , <. 3 , r >. } e. ( Prime ^m ( 1 ... 3 ) ) ) | 
						
							| 64 |  | fveq1 |  |-  ( f = { <. 1 , p >. , <. 2 , q >. , <. 3 , r >. } -> ( f ` k ) = ( { <. 1 , p >. , <. 2 , q >. , <. 3 , r >. } ` k ) ) | 
						
							| 65 | 64 | sumeq2sdv |  |-  ( f = { <. 1 , p >. , <. 2 , q >. , <. 3 , r >. } -> sum_ k e. ( 1 ... 3 ) ( f ` k ) = sum_ k e. ( 1 ... 3 ) ( { <. 1 , p >. , <. 2 , q >. , <. 3 , r >. } ` k ) ) | 
						
							| 66 | 65 | eqeq2d |  |-  ( f = { <. 1 , p >. , <. 2 , q >. , <. 3 , r >. } -> ( ( ( p + q ) + r ) = sum_ k e. ( 1 ... 3 ) ( f ` k ) <-> ( ( p + q ) + r ) = sum_ k e. ( 1 ... 3 ) ( { <. 1 , p >. , <. 2 , q >. , <. 3 , r >. } ` k ) ) ) | 
						
							| 67 | 66 | adantl |  |-  ( ( ( ( p e. Prime /\ q e. Prime ) /\ r e. Prime ) /\ f = { <. 1 , p >. , <. 2 , q >. , <. 3 , r >. } ) -> ( ( ( p + q ) + r ) = sum_ k e. ( 1 ... 3 ) ( f ` k ) <-> ( ( p + q ) + r ) = sum_ k e. ( 1 ... 3 ) ( { <. 1 , p >. , <. 2 , q >. , <. 3 , r >. } ` k ) ) ) | 
						
							| 68 | 51 | a1i |  |-  ( ( ( p e. Prime /\ q e. Prime ) /\ r e. Prime ) -> ( 1 ... 3 ) = { 1 , 2 , 3 } ) | 
						
							| 69 | 68 | sumeq1d |  |-  ( ( ( p e. Prime /\ q e. Prime ) /\ r e. Prime ) -> sum_ k e. ( 1 ... 3 ) ( { <. 1 , p >. , <. 2 , q >. , <. 3 , r >. } ` k ) = sum_ k e. { 1 , 2 , 3 } ( { <. 1 , p >. , <. 2 , q >. , <. 3 , r >. } ` k ) ) | 
						
							| 70 |  | fveq2 |  |-  ( k = 1 -> ( { <. 1 , p >. , <. 2 , q >. , <. 3 , r >. } ` k ) = ( { <. 1 , p >. , <. 2 , q >. , <. 3 , r >. } ` 1 ) ) | 
						
							| 71 | 23 26 | fvtp1 |  |-  ( ( 1 =/= 2 /\ 1 =/= 3 ) -> ( { <. 1 , p >. , <. 2 , q >. , <. 3 , r >. } ` 1 ) = p ) | 
						
							| 72 | 29 32 71 | mp2an |  |-  ( { <. 1 , p >. , <. 2 , q >. , <. 3 , r >. } ` 1 ) = p | 
						
							| 73 | 70 72 | eqtrdi |  |-  ( k = 1 -> ( { <. 1 , p >. , <. 2 , q >. , <. 3 , r >. } ` k ) = p ) | 
						
							| 74 |  | fveq2 |  |-  ( k = 2 -> ( { <. 1 , p >. , <. 2 , q >. , <. 3 , r >. } ` k ) = ( { <. 1 , p >. , <. 2 , q >. , <. 3 , r >. } ` 2 ) ) | 
						
							| 75 | 24 27 | fvtp2 |  |-  ( ( 1 =/= 2 /\ 2 =/= 3 ) -> ( { <. 1 , p >. , <. 2 , q >. , <. 3 , r >. } ` 2 ) = q ) | 
						
							| 76 | 29 35 75 | mp2an |  |-  ( { <. 1 , p >. , <. 2 , q >. , <. 3 , r >. } ` 2 ) = q | 
						
							| 77 | 74 76 | eqtrdi |  |-  ( k = 2 -> ( { <. 1 , p >. , <. 2 , q >. , <. 3 , r >. } ` k ) = q ) | 
						
							| 78 |  | fveq2 |  |-  ( k = 3 -> ( { <. 1 , p >. , <. 2 , q >. , <. 3 , r >. } ` k ) = ( { <. 1 , p >. , <. 2 , q >. , <. 3 , r >. } ` 3 ) ) | 
						
							| 79 | 25 28 | fvtp3 |  |-  ( ( 1 =/= 3 /\ 2 =/= 3 ) -> ( { <. 1 , p >. , <. 2 , q >. , <. 3 , r >. } ` 3 ) = r ) | 
						
							| 80 | 32 35 79 | mp2an |  |-  ( { <. 1 , p >. , <. 2 , q >. , <. 3 , r >. } ` 3 ) = r | 
						
							| 81 | 78 80 | eqtrdi |  |-  ( k = 3 -> ( { <. 1 , p >. , <. 2 , q >. , <. 3 , r >. } ` k ) = r ) | 
						
							| 82 |  | prmz |  |-  ( p e. Prime -> p e. ZZ ) | 
						
							| 83 | 82 | zcnd |  |-  ( p e. Prime -> p e. CC ) | 
						
							| 84 |  | prmz |  |-  ( q e. Prime -> q e. ZZ ) | 
						
							| 85 | 84 | zcnd |  |-  ( q e. Prime -> q e. CC ) | 
						
							| 86 |  | prmz |  |-  ( r e. Prime -> r e. ZZ ) | 
						
							| 87 | 86 | zcnd |  |-  ( r e. Prime -> r e. CC ) | 
						
							| 88 | 83 85 87 | 3anim123i |  |-  ( ( p e. Prime /\ q e. Prime /\ r e. Prime ) -> ( p e. CC /\ q e. CC /\ r e. CC ) ) | 
						
							| 89 | 88 | 3expa |  |-  ( ( ( p e. Prime /\ q e. Prime ) /\ r e. Prime ) -> ( p e. CC /\ q e. CC /\ r e. CC ) ) | 
						
							| 90 |  | 2z |  |-  2 e. ZZ | 
						
							| 91 |  | 3z |  |-  3 e. ZZ | 
						
							| 92 | 41 90 91 | 3pm3.2i |  |-  ( 1 e. ZZ /\ 2 e. ZZ /\ 3 e. ZZ ) | 
						
							| 93 | 92 | a1i |  |-  ( ( ( p e. Prime /\ q e. Prime ) /\ r e. Prime ) -> ( 1 e. ZZ /\ 2 e. ZZ /\ 3 e. ZZ ) ) | 
						
							| 94 | 29 | a1i |  |-  ( ( ( p e. Prime /\ q e. Prime ) /\ r e. Prime ) -> 1 =/= 2 ) | 
						
							| 95 | 32 | a1i |  |-  ( ( ( p e. Prime /\ q e. Prime ) /\ r e. Prime ) -> 1 =/= 3 ) | 
						
							| 96 | 35 | a1i |  |-  ( ( ( p e. Prime /\ q e. Prime ) /\ r e. Prime ) -> 2 =/= 3 ) | 
						
							| 97 | 73 77 81 89 93 94 95 96 | sumtp |  |-  ( ( ( p e. Prime /\ q e. Prime ) /\ r e. Prime ) -> sum_ k e. { 1 , 2 , 3 } ( { <. 1 , p >. , <. 2 , q >. , <. 3 , r >. } ` k ) = ( ( p + q ) + r ) ) | 
						
							| 98 | 69 97 | eqtr2d |  |-  ( ( ( p e. Prime /\ q e. Prime ) /\ r e. Prime ) -> ( ( p + q ) + r ) = sum_ k e. ( 1 ... 3 ) ( { <. 1 , p >. , <. 2 , q >. , <. 3 , r >. } ` k ) ) | 
						
							| 99 | 63 67 98 | rspcedvd |  |-  ( ( ( p e. Prime /\ q e. Prime ) /\ r e. Prime ) -> E. f e. ( Prime ^m ( 1 ... 3 ) ) ( ( p + q ) + r ) = sum_ k e. ( 1 ... 3 ) ( f ` k ) ) | 
						
							| 100 |  | eqeq1 |  |-  ( N = ( ( p + q ) + r ) -> ( N = sum_ k e. ( 1 ... 3 ) ( f ` k ) <-> ( ( p + q ) + r ) = sum_ k e. ( 1 ... 3 ) ( f ` k ) ) ) | 
						
							| 101 | 100 | rexbidv |  |-  ( N = ( ( p + q ) + r ) -> ( E. f e. ( Prime ^m ( 1 ... 3 ) ) N = sum_ k e. ( 1 ... 3 ) ( f ` k ) <-> E. f e. ( Prime ^m ( 1 ... 3 ) ) ( ( p + q ) + r ) = sum_ k e. ( 1 ... 3 ) ( f ` k ) ) ) | 
						
							| 102 | 99 101 | syl5ibrcom |  |-  ( ( ( p e. Prime /\ q e. Prime ) /\ r e. Prime ) -> ( N = ( ( p + q ) + r ) -> E. f e. ( Prime ^m ( 1 ... 3 ) ) N = sum_ k e. ( 1 ... 3 ) ( f ` k ) ) ) | 
						
							| 103 | 102 | adantld |  |-  ( ( ( p e. Prime /\ q e. Prime ) /\ r e. Prime ) -> ( ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ N = ( ( p + q ) + r ) ) -> E. f e. ( Prime ^m ( 1 ... 3 ) ) N = sum_ k e. ( 1 ... 3 ) ( f ` k ) ) ) | 
						
							| 104 | 103 | rexlimdva |  |-  ( ( p e. Prime /\ q e. Prime ) -> ( E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ N = ( ( p + q ) + r ) ) -> E. f e. ( Prime ^m ( 1 ... 3 ) ) N = sum_ k e. ( 1 ... 3 ) ( f ` k ) ) ) | 
						
							| 105 | 104 | rexlimivv |  |-  ( E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ N = ( ( p + q ) + r ) ) -> E. f e. ( Prime ^m ( 1 ... 3 ) ) N = sum_ k e. ( 1 ... 3 ) ( f ` k ) ) | 
						
							| 106 | 105 | adantl |  |-  ( ( N e. Odd /\ E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ N = ( ( p + q ) + r ) ) ) -> E. f e. ( Prime ^m ( 1 ... 3 ) ) N = sum_ k e. ( 1 ... 3 ) ( f ` k ) ) | 
						
							| 107 | 22 106 | sylbi |  |-  ( N e. GoldbachOdd -> E. f e. ( Prime ^m ( 1 ... 3 ) ) N = sum_ k e. ( 1 ... 3 ) ( f ` k ) ) | 
						
							| 108 | 107 | a1i |  |-  ( ( N e. ( ZZ>= ` 8 ) /\ N e. Odd ) -> ( N e. GoldbachOdd -> E. f e. ( Prime ^m ( 1 ... 3 ) ) N = sum_ k e. ( 1 ... 3 ) ( f ` k ) ) ) | 
						
							| 109 | 5 21 108 | 3syld |  |-  ( ( N e. ( ZZ>= ` 8 ) /\ N e. Odd ) -> ( A. m e. Odd ( 7 < m -> m e. GoldbachOdd ) -> E. f e. ( Prime ^m ( 1 ... 3 ) ) N = sum_ k e. ( 1 ... 3 ) ( f ` k ) ) ) | 
						
							| 110 | 109 | com12 |  |-  ( A. m e. Odd ( 7 < m -> m e. GoldbachOdd ) -> ( ( N e. ( ZZ>= ` 8 ) /\ N e. Odd ) -> E. f e. ( Prime ^m ( 1 ... 3 ) ) N = sum_ k e. ( 1 ... 3 ) ( f ` k ) ) ) |