| Step | Hyp | Ref | Expression | 
						
							| 1 |  | n0 |  |-  ( A =/= (/) <-> E. y y e. A ) | 
						
							| 2 |  | vex |  |-  y e. _V | 
						
							| 3 | 2 | snss |  |-  ( y e. A <-> { y } C_ A ) | 
						
							| 4 | 2 | snnz |  |-  { y } =/= (/) | 
						
							| 5 |  | vsnex |  |-  { y } e. _V | 
						
							| 6 |  | sseq1 |  |-  ( x = { y } -> ( x C_ A <-> { y } C_ A ) ) | 
						
							| 7 |  | neeq1 |  |-  ( x = { y } -> ( x =/= (/) <-> { y } =/= (/) ) ) | 
						
							| 8 | 6 7 | anbi12d |  |-  ( x = { y } -> ( ( x C_ A /\ x =/= (/) ) <-> ( { y } C_ A /\ { y } =/= (/) ) ) ) | 
						
							| 9 | 5 8 | spcev |  |-  ( ( { y } C_ A /\ { y } =/= (/) ) -> E. x ( x C_ A /\ x =/= (/) ) ) | 
						
							| 10 | 4 9 | mpan2 |  |-  ( { y } C_ A -> E. x ( x C_ A /\ x =/= (/) ) ) | 
						
							| 11 | 3 10 | sylbi |  |-  ( y e. A -> E. x ( x C_ A /\ x =/= (/) ) ) | 
						
							| 12 | 11 | exlimiv |  |-  ( E. y y e. A -> E. x ( x C_ A /\ x =/= (/) ) ) | 
						
							| 13 | 1 12 | sylbi |  |-  ( A =/= (/) -> E. x ( x C_ A /\ x =/= (/) ) ) |