| Step | Hyp | Ref | Expression | 
						
							| 1 |  | unieq |  |-  ( S = (/) -> U. S = U. (/) ) | 
						
							| 2 |  | uni0 |  |-  U. (/) = (/) | 
						
							| 3 |  | peano1 |  |-  (/) e. _om | 
						
							| 4 | 2 3 | eqeltri |  |-  U. (/) e. _om | 
						
							| 5 | 1 4 | eqeltrdi |  |-  ( S = (/) -> U. S e. _om ) | 
						
							| 6 | 5 | adantl |  |-  ( ( ( S C_ _om /\ S e. Fin ) /\ S = (/) ) -> U. S e. _om ) | 
						
							| 7 |  | simpll |  |-  ( ( ( S C_ _om /\ S e. Fin ) /\ S =/= (/) ) -> S C_ _om ) | 
						
							| 8 |  | omsson |  |-  _om C_ On | 
						
							| 9 | 7 8 | sstrdi |  |-  ( ( ( S C_ _om /\ S e. Fin ) /\ S =/= (/) ) -> S C_ On ) | 
						
							| 10 |  | simplr |  |-  ( ( ( S C_ _om /\ S e. Fin ) /\ S =/= (/) ) -> S e. Fin ) | 
						
							| 11 |  | simpr |  |-  ( ( ( S C_ _om /\ S e. Fin ) /\ S =/= (/) ) -> S =/= (/) ) | 
						
							| 12 |  | ordunifi |  |-  ( ( S C_ On /\ S e. Fin /\ S =/= (/) ) -> U. S e. S ) | 
						
							| 13 | 9 10 11 12 | syl3anc |  |-  ( ( ( S C_ _om /\ S e. Fin ) /\ S =/= (/) ) -> U. S e. S ) | 
						
							| 14 | 7 13 | sseldd |  |-  ( ( ( S C_ _om /\ S e. Fin ) /\ S =/= (/) ) -> U. S e. _om ) | 
						
							| 15 | 6 14 | pm2.61dane |  |-  ( ( S C_ _om /\ S e. Fin ) -> U. S e. _om ) |