Description: Well-ordering principle: any nonempty set of positive integers has a least element. Theorem I.37 (well-ordering principle) of Apostol p. 34. (Contributed by NM, 17-Aug-2001)
Ref | Expression | ||
---|---|---|---|
Assertion | nnwo | |- ( ( A C_ NN /\ A =/= (/) ) -> E. x e. A A. y e. A x <_ y ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
2 | 1 | sseq2i | |- ( A C_ NN <-> A C_ ( ZZ>= ` 1 ) ) |
3 | uzwo | |- ( ( A C_ ( ZZ>= ` 1 ) /\ A =/= (/) ) -> E. x e. A A. y e. A x <_ y ) |
|
4 | 2 3 | sylanb | |- ( ( A C_ NN /\ A =/= (/) ) -> E. x e. A A. y e. A x <_ y ) |