Metamath Proof Explorer


Theorem nnwo

Description: Well-ordering principle: any nonempty set of positive integers has a least element. Theorem I.37 (well-ordering principle) of Apostol p. 34. (Contributed by NM, 17-Aug-2001)

Ref Expression
Assertion nnwo
|- ( ( A C_ NN /\ A =/= (/) ) -> E. x e. A A. y e. A x <_ y )

Proof

Step Hyp Ref Expression
1 nnuz
 |-  NN = ( ZZ>= ` 1 )
2 1 sseq2i
 |-  ( A C_ NN <-> A C_ ( ZZ>= ` 1 ) )
3 uzwo
 |-  ( ( A C_ ( ZZ>= ` 1 ) /\ A =/= (/) ) -> E. x e. A A. y e. A x <_ y )
4 2 3 sylanb
 |-  ( ( A C_ NN /\ A =/= (/) ) -> E. x e. A A. y e. A x <_ y )