Description: A positive integer is an integer. (Contributed by NM, 9-May-2004) Reduce dependencies on axioms. (Revised by Steven Nguyen, 29-Nov-2022)
Ref | Expression | ||
---|---|---|---|
Assertion | nnz | |- ( N e. NN -> N e. ZZ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnre | |- ( N e. NN -> N e. RR ) |
|
2 | 3mix2 | |- ( N e. NN -> ( N = 0 \/ N e. NN \/ -u N e. NN ) ) |
|
3 | elz | |- ( N e. ZZ <-> ( N e. RR /\ ( N = 0 \/ N e. NN \/ -u N e. NN ) ) ) |
|
4 | 1 2 3 | sylanbrc | |- ( N e. NN -> N e. ZZ ) |