Metamath Proof Explorer


Theorem nnz

Description: A positive integer is an integer. (Contributed by NM, 9-May-2004) Reduce dependencies on axioms. (Revised by Steven Nguyen, 29-Nov-2022)

Ref Expression
Assertion nnz
|- ( N e. NN -> N e. ZZ )

Proof

Step Hyp Ref Expression
1 nnre
 |-  ( N e. NN -> N e. RR )
2 3mix2
 |-  ( N e. NN -> ( N = 0 \/ N e. NN \/ -u N e. NN ) )
3 elz
 |-  ( N e. ZZ <-> ( N e. RR /\ ( N = 0 \/ N e. NN \/ -u N e. NN ) ) )
4 1 2 3 sylanbrc
 |-  ( N e. NN -> N e. ZZ )