Description: Double induction on surreals. The many substitution instances are to cover all possible cases. (Contributed by Scott Fenton, 22-Aug-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | no2inds.1 | |- ( x = z -> ( ph <-> ps ) ) |
|
no2inds.2 | |- ( y = w -> ( ps <-> ch ) ) |
||
no2inds.3 | |- ( x = z -> ( th <-> ch ) ) |
||
no2inds.4 | |- ( x = A -> ( ph <-> ta ) ) |
||
no2inds.5 | |- ( y = B -> ( ta <-> et ) ) |
||
no2inds.i | |- ( ( x e. No /\ y e. No ) -> ( ( A. z e. ( ( _Left ` x ) u. ( _Right ` x ) ) A. w e. ( ( _Left ` y ) u. ( _Right ` y ) ) ch /\ A. z e. ( ( _Left ` x ) u. ( _Right ` x ) ) ps /\ A. w e. ( ( _Left ` y ) u. ( _Right ` y ) ) th ) -> ph ) ) |
||
Assertion | no2inds | |- ( ( A e. No /\ B e. No ) -> et ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | no2inds.1 | |- ( x = z -> ( ph <-> ps ) ) |
|
2 | no2inds.2 | |- ( y = w -> ( ps <-> ch ) ) |
|
3 | no2inds.3 | |- ( x = z -> ( th <-> ch ) ) |
|
4 | no2inds.4 | |- ( x = A -> ( ph <-> ta ) ) |
|
5 | no2inds.5 | |- ( y = B -> ( ta <-> et ) ) |
|
6 | no2inds.i | |- ( ( x e. No /\ y e. No ) -> ( ( A. z e. ( ( _Left ` x ) u. ( _Right ` x ) ) A. w e. ( ( _Left ` y ) u. ( _Right ` y ) ) ch /\ A. z e. ( ( _Left ` x ) u. ( _Right ` x ) ) ps /\ A. w e. ( ( _Left ` y ) u. ( _Right ` y ) ) th ) -> ph ) ) |
|
7 | eqid | |- { <. a , b >. | a e. ( ( _Left ` b ) u. ( _Right ` b ) ) } = { <. a , b >. | a e. ( ( _Left ` b ) u. ( _Right ` b ) ) } |
|
8 | 7 1 2 3 4 5 6 | no2indslem | |- ( ( A e. No /\ B e. No ) -> et ) |