| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nodenselem5 |
|- ( ( ( A e. No /\ B e. No ) /\ ( ( bday ` A ) = ( bday ` B ) /\ A |^| { a e. On | ( A ` a ) =/= ( B ` a ) } e. ( bday ` A ) ) |
| 2 |
1
|
exp32 |
|- ( ( A e. No /\ B e. No ) -> ( ( bday ` A ) = ( bday ` B ) -> ( A |^| { a e. On | ( A ` a ) =/= ( B ` a ) } e. ( bday ` A ) ) ) ) |
| 3 |
2
|
3impia |
|- ( ( A e. No /\ B e. No /\ ( bday ` A ) = ( bday ` B ) ) -> ( A |^| { a e. On | ( A ` a ) =/= ( B ` a ) } e. ( bday ` A ) ) ) |
| 4 |
|
sltval2 |
|- ( ( A e. No /\ B e. No ) -> ( A ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) ) ) |
| 5 |
4
|
3adant3 |
|- ( ( A e. No /\ B e. No /\ ( bday ` A ) = ( bday ` B ) ) -> ( A ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) ) ) |
| 6 |
|
fvex |
|- ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) e. _V |
| 7 |
|
fvex |
|- ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) e. _V |
| 8 |
6 7
|
brtp |
|- ( ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) <-> ( ( ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = 1o /\ ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = (/) ) \/ ( ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = 1o /\ ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = 2o ) \/ ( ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = (/) /\ ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = 2o ) ) ) |
| 9 |
|
eleq2 |
|- ( ( bday ` A ) = ( bday ` B ) -> ( |^| { a e. On | ( A ` a ) =/= ( B ` a ) } e. ( bday ` A ) <-> |^| { a e. On | ( A ` a ) =/= ( B ` a ) } e. ( bday ` B ) ) ) |
| 10 |
9
|
biimpd |
|- ( ( bday ` A ) = ( bday ` B ) -> ( |^| { a e. On | ( A ` a ) =/= ( B ` a ) } e. ( bday ` A ) -> |^| { a e. On | ( A ` a ) =/= ( B ` a ) } e. ( bday ` B ) ) ) |
| 11 |
|
nosgnn0 |
|- -. (/) e. { 1o , 2o } |
| 12 |
|
nofnbday |
|- ( B e. No -> B Fn ( bday ` B ) ) |
| 13 |
|
fnfvelrn |
|- ( ( B Fn ( bday ` B ) /\ |^| { a e. On | ( A ` a ) =/= ( B ` a ) } e. ( bday ` B ) ) -> ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) e. ran B ) |
| 14 |
|
eleq1 |
|- ( ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = (/) -> ( ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) e. ran B <-> (/) e. ran B ) ) |
| 15 |
13 14
|
syl5ibcom |
|- ( ( B Fn ( bday ` B ) /\ |^| { a e. On | ( A ` a ) =/= ( B ` a ) } e. ( bday ` B ) ) -> ( ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = (/) -> (/) e. ran B ) ) |
| 16 |
12 15
|
sylan |
|- ( ( B e. No /\ |^| { a e. On | ( A ` a ) =/= ( B ` a ) } e. ( bday ` B ) ) -> ( ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = (/) -> (/) e. ran B ) ) |
| 17 |
|
norn |
|- ( B e. No -> ran B C_ { 1o , 2o } ) |
| 18 |
17
|
sseld |
|- ( B e. No -> ( (/) e. ran B -> (/) e. { 1o , 2o } ) ) |
| 19 |
18
|
adantr |
|- ( ( B e. No /\ |^| { a e. On | ( A ` a ) =/= ( B ` a ) } e. ( bday ` B ) ) -> ( (/) e. ran B -> (/) e. { 1o , 2o } ) ) |
| 20 |
16 19
|
syld |
|- ( ( B e. No /\ |^| { a e. On | ( A ` a ) =/= ( B ` a ) } e. ( bday ` B ) ) -> ( ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = (/) -> (/) e. { 1o , 2o } ) ) |
| 21 |
11 20
|
mtoi |
|- ( ( B e. No /\ |^| { a e. On | ( A ` a ) =/= ( B ` a ) } e. ( bday ` B ) ) -> -. ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = (/) ) |
| 22 |
21
|
ex |
|- ( B e. No -> ( |^| { a e. On | ( A ` a ) =/= ( B ` a ) } e. ( bday ` B ) -> -. ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = (/) ) ) |
| 23 |
22
|
adantl |
|- ( ( A e. No /\ B e. No ) -> ( |^| { a e. On | ( A ` a ) =/= ( B ` a ) } e. ( bday ` B ) -> -. ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = (/) ) ) |
| 24 |
10 23
|
syl9r |
|- ( ( A e. No /\ B e. No ) -> ( ( bday ` A ) = ( bday ` B ) -> ( |^| { a e. On | ( A ` a ) =/= ( B ` a ) } e. ( bday ` A ) -> -. ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = (/) ) ) ) |
| 25 |
24
|
3impia |
|- ( ( A e. No /\ B e. No /\ ( bday ` A ) = ( bday ` B ) ) -> ( |^| { a e. On | ( A ` a ) =/= ( B ` a ) } e. ( bday ` A ) -> -. ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = (/) ) ) |
| 26 |
25
|
imp |
|- ( ( ( A e. No /\ B e. No /\ ( bday ` A ) = ( bday ` B ) ) /\ |^| { a e. On | ( A ` a ) =/= ( B ` a ) } e. ( bday ` A ) ) -> -. ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = (/) ) |
| 27 |
26
|
intnand |
|- ( ( ( A e. No /\ B e. No /\ ( bday ` A ) = ( bday ` B ) ) /\ |^| { a e. On | ( A ` a ) =/= ( B ` a ) } e. ( bday ` A ) ) -> -. ( ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = 1o /\ ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = (/) ) ) |
| 28 |
|
nofnbday |
|- ( A e. No -> A Fn ( bday ` A ) ) |
| 29 |
|
fnfvelrn |
|- ( ( A Fn ( bday ` A ) /\ |^| { a e. On | ( A ` a ) =/= ( B ` a ) } e. ( bday ` A ) ) -> ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) e. ran A ) |
| 30 |
|
eleq1 |
|- ( ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = (/) -> ( ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) e. ran A <-> (/) e. ran A ) ) |
| 31 |
29 30
|
syl5ibcom |
|- ( ( A Fn ( bday ` A ) /\ |^| { a e. On | ( A ` a ) =/= ( B ` a ) } e. ( bday ` A ) ) -> ( ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = (/) -> (/) e. ran A ) ) |
| 32 |
28 31
|
sylan |
|- ( ( A e. No /\ |^| { a e. On | ( A ` a ) =/= ( B ` a ) } e. ( bday ` A ) ) -> ( ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = (/) -> (/) e. ran A ) ) |
| 33 |
|
norn |
|- ( A e. No -> ran A C_ { 1o , 2o } ) |
| 34 |
33
|
sseld |
|- ( A e. No -> ( (/) e. ran A -> (/) e. { 1o , 2o } ) ) |
| 35 |
34
|
adantr |
|- ( ( A e. No /\ |^| { a e. On | ( A ` a ) =/= ( B ` a ) } e. ( bday ` A ) ) -> ( (/) e. ran A -> (/) e. { 1o , 2o } ) ) |
| 36 |
32 35
|
syld |
|- ( ( A e. No /\ |^| { a e. On | ( A ` a ) =/= ( B ` a ) } e. ( bday ` A ) ) -> ( ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = (/) -> (/) e. { 1o , 2o } ) ) |
| 37 |
11 36
|
mtoi |
|- ( ( A e. No /\ |^| { a e. On | ( A ` a ) =/= ( B ` a ) } e. ( bday ` A ) ) -> -. ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = (/) ) |
| 38 |
37
|
3ad2antl1 |
|- ( ( ( A e. No /\ B e. No /\ ( bday ` A ) = ( bday ` B ) ) /\ |^| { a e. On | ( A ` a ) =/= ( B ` a ) } e. ( bday ` A ) ) -> -. ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = (/) ) |
| 39 |
38
|
intnanrd |
|- ( ( ( A e. No /\ B e. No /\ ( bday ` A ) = ( bday ` B ) ) /\ |^| { a e. On | ( A ` a ) =/= ( B ` a ) } e. ( bday ` A ) ) -> -. ( ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = (/) /\ ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = 2o ) ) |
| 40 |
|
3orel13 |
|- ( ( -. ( ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = 1o /\ ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = (/) ) /\ -. ( ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = (/) /\ ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = 2o ) ) -> ( ( ( ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = 1o /\ ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = (/) ) \/ ( ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = 1o /\ ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = 2o ) \/ ( ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = (/) /\ ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = 2o ) ) -> ( ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = 1o /\ ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = 2o ) ) ) |
| 41 |
27 39 40
|
syl2anc |
|- ( ( ( A e. No /\ B e. No /\ ( bday ` A ) = ( bday ` B ) ) /\ |^| { a e. On | ( A ` a ) =/= ( B ` a ) } e. ( bday ` A ) ) -> ( ( ( ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = 1o /\ ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = (/) ) \/ ( ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = 1o /\ ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = 2o ) \/ ( ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = (/) /\ ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = 2o ) ) -> ( ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = 1o /\ ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = 2o ) ) ) |
| 42 |
41
|
ex |
|- ( ( A e. No /\ B e. No /\ ( bday ` A ) = ( bday ` B ) ) -> ( |^| { a e. On | ( A ` a ) =/= ( B ` a ) } e. ( bday ` A ) -> ( ( ( ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = 1o /\ ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = (/) ) \/ ( ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = 1o /\ ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = 2o ) \/ ( ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = (/) /\ ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = 2o ) ) -> ( ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = 1o /\ ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = 2o ) ) ) ) |
| 43 |
42
|
com23 |
|- ( ( A e. No /\ B e. No /\ ( bday ` A ) = ( bday ` B ) ) -> ( ( ( ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = 1o /\ ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = (/) ) \/ ( ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = 1o /\ ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = 2o ) \/ ( ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = (/) /\ ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = 2o ) ) -> ( |^| { a e. On | ( A ` a ) =/= ( B ` a ) } e. ( bday ` A ) -> ( ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = 1o /\ ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = 2o ) ) ) ) |
| 44 |
8 43
|
biimtrid |
|- ( ( A e. No /\ B e. No /\ ( bday ` A ) = ( bday ` B ) ) -> ( ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) -> ( |^| { a e. On | ( A ` a ) =/= ( B ` a ) } e. ( bday ` A ) -> ( ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = 1o /\ ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = 2o ) ) ) ) |
| 45 |
5 44
|
sylbid |
|- ( ( A e. No /\ B e. No /\ ( bday ` A ) = ( bday ` B ) ) -> ( A ( |^| { a e. On | ( A ` a ) =/= ( B ` a ) } e. ( bday ` A ) -> ( ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = 1o /\ ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = 2o ) ) ) ) |
| 46 |
3 45
|
mpdd |
|- ( ( A e. No /\ B e. No /\ ( bday ` A ) = ( bday ` B ) ) -> ( A ( ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = 1o /\ ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = 2o ) ) ) |
| 47 |
|
3mix2 |
|- ( ( ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = 1o /\ ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = 2o ) -> ( ( ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = 1o /\ ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = (/) ) \/ ( ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = 1o /\ ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = 2o ) \/ ( ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = (/) /\ ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = 2o ) ) ) |
| 48 |
47 8
|
sylibr |
|- ( ( ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = 1o /\ ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = 2o ) -> ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) ) |
| 49 |
48 5
|
imbitrrid |
|- ( ( A e. No /\ B e. No /\ ( bday ` A ) = ( bday ` B ) ) -> ( ( ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = 1o /\ ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = 2o ) -> A |
| 50 |
46 49
|
impbid |
|- ( ( A e. No /\ B e. No /\ ( bday ` A ) = ( bday ` B ) ) -> ( A ( ( A ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = 1o /\ ( B ` |^| { a e. On | ( A ` a ) =/= ( B ` a ) } ) = 2o ) ) ) |