Metamath Proof Explorer


Theorem noelOLD

Description: Obsolete version of noel as of 18-Sep-2024. (Contributed by NM, 21-Jun-1993) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion noelOLD
|- -. A e. (/)

Proof

Step Hyp Ref Expression
1 pm3.24
 |-  -. ( y e. _V /\ -. y e. _V )
2 1 nex
 |-  -. E. y ( y e. _V /\ -. y e. _V )
3 df-clab
 |-  ( x e. { y | ( y e. _V /\ -. y e. _V ) } <-> [ x / y ] ( y e. _V /\ -. y e. _V ) )
4 spsbe
 |-  ( [ x / y ] ( y e. _V /\ -. y e. _V ) -> E. y ( y e. _V /\ -. y e. _V ) )
5 3 4 sylbi
 |-  ( x e. { y | ( y e. _V /\ -. y e. _V ) } -> E. y ( y e. _V /\ -. y e. _V ) )
6 2 5 mto
 |-  -. x e. { y | ( y e. _V /\ -. y e. _V ) }
7 df-nul
 |-  (/) = ( _V \ _V )
8 df-dif
 |-  ( _V \ _V ) = { y | ( y e. _V /\ -. y e. _V ) }
9 7 8 eqtri
 |-  (/) = { y | ( y e. _V /\ -. y e. _V ) }
10 9 eleq2i
 |-  ( x e. (/) <-> x e. { y | ( y e. _V /\ -. y e. _V ) } )
11 6 10 mtbir
 |-  -. x e. (/)
12 11 intnan
 |-  -. ( x = A /\ x e. (/) )
13 12 nex
 |-  -. E. x ( x = A /\ x e. (/) )
14 dfclel
 |-  ( A e. (/) <-> E. x ( x = A /\ x e. (/) ) )
15 13 14 mtbir
 |-  -. A e. (/)