| Step |
Hyp |
Ref |
Expression |
| 1 |
|
noetasuplem.1 |
|- S = if ( E. x e. A A. y e. A -. x . } ) , ( g e. { y | E. u e. A ( y e. dom u /\ A. v e. A ( -. v ( u |` suc y ) = ( v |` suc y ) ) ) } |-> ( iota x E. u e. A ( g e. dom u /\ A. v e. A ( -. v ( u |` suc g ) = ( v |` suc g ) ) /\ ( u ` g ) = x ) ) ) ) |
| 2 |
|
noetasuplem.2 |
|- Z = ( S u. ( ( suc U. ( bday " B ) \ dom S ) X. { 1o } ) ) |
| 3 |
|
ralcom |
|- ( A. a e. A A. b e. B a A. b e. B A. a e. A a |
| 4 |
|
simplll |
|- ( ( ( ( A C_ No /\ A e. _V ) /\ ( B C_ No /\ B e. _V ) ) /\ b e. B ) -> A C_ No ) |
| 5 |
|
simpllr |
|- ( ( ( ( A C_ No /\ A e. _V ) /\ ( B C_ No /\ B e. _V ) ) /\ b e. B ) -> A e. _V ) |
| 6 |
|
simprl |
|- ( ( ( A C_ No /\ A e. _V ) /\ ( B C_ No /\ B e. _V ) ) -> B C_ No ) |
| 7 |
6
|
sselda |
|- ( ( ( ( A C_ No /\ A e. _V ) /\ ( B C_ No /\ B e. _V ) ) /\ b e. B ) -> b e. No ) |
| 8 |
1
|
nosupbnd2 |
|- ( ( A C_ No /\ A e. _V /\ b e. No ) -> ( A. a e. A a -. ( b |` dom S ) |
| 9 |
4 5 7 8
|
syl3anc |
|- ( ( ( ( A C_ No /\ A e. _V ) /\ ( B C_ No /\ B e. _V ) ) /\ b e. B ) -> ( A. a e. A a -. ( b |` dom S ) |
| 10 |
|
simpl |
|- ( ( b e. B /\ -. ( b |` dom S ) b e. B ) |
| 11 |
|
ssel2 |
|- ( ( B C_ No /\ b e. B ) -> b e. No ) |
| 12 |
6 10 11
|
syl2an |
|- ( ( ( ( A C_ No /\ A e. _V ) /\ ( B C_ No /\ B e. _V ) ) /\ ( b e. B /\ -. ( b |` dom S ) b e. No ) |
| 13 |
|
nodmord |
|- ( b e. No -> Ord dom b ) |
| 14 |
|
ordirr |
|- ( Ord dom b -> -. dom b e. dom b ) |
| 15 |
12 13 14
|
3syl |
|- ( ( ( ( A C_ No /\ A e. _V ) /\ ( B C_ No /\ B e. _V ) ) /\ ( b e. B /\ -. ( b |` dom S ) -. dom b e. dom b ) |
| 16 |
|
ssun2 |
|- suc U. ( bday " B ) C_ ( dom S u. suc U. ( bday " B ) ) |
| 17 |
|
bdayval |
|- ( b e. No -> ( bday ` b ) = dom b ) |
| 18 |
12 17
|
syl |
|- ( ( ( ( A C_ No /\ A e. _V ) /\ ( B C_ No /\ B e. _V ) ) /\ ( b e. B /\ -. ( b |` dom S ) ( bday ` b ) = dom b ) |
| 19 |
|
bdayfo |
|- bday : No -onto-> On |
| 20 |
|
fofn |
|- ( bday : No -onto-> On -> bday Fn No ) |
| 21 |
19 20
|
ax-mp |
|- bday Fn No |
| 22 |
|
fnfvima |
|- ( ( bday Fn No /\ B C_ No /\ b e. B ) -> ( bday ` b ) e. ( bday " B ) ) |
| 23 |
21 22
|
mp3an1 |
|- ( ( B C_ No /\ b e. B ) -> ( bday ` b ) e. ( bday " B ) ) |
| 24 |
6 10 23
|
syl2an |
|- ( ( ( ( A C_ No /\ A e. _V ) /\ ( B C_ No /\ B e. _V ) ) /\ ( b e. B /\ -. ( b |` dom S ) ( bday ` b ) e. ( bday " B ) ) |
| 25 |
18 24
|
eqeltrrd |
|- ( ( ( ( A C_ No /\ A e. _V ) /\ ( B C_ No /\ B e. _V ) ) /\ ( b e. B /\ -. ( b |` dom S ) dom b e. ( bday " B ) ) |
| 26 |
|
elssuni |
|- ( dom b e. ( bday " B ) -> dom b C_ U. ( bday " B ) ) |
| 27 |
25 26
|
syl |
|- ( ( ( ( A C_ No /\ A e. _V ) /\ ( B C_ No /\ B e. _V ) ) /\ ( b e. B /\ -. ( b |` dom S ) dom b C_ U. ( bday " B ) ) |
| 28 |
|
nodmon |
|- ( b e. No -> dom b e. On ) |
| 29 |
|
imassrn |
|- ( bday " B ) C_ ran bday |
| 30 |
|
forn |
|- ( bday : No -onto-> On -> ran bday = On ) |
| 31 |
19 30
|
ax-mp |
|- ran bday = On |
| 32 |
29 31
|
sseqtri |
|- ( bday " B ) C_ On |
| 33 |
|
ssorduni |
|- ( ( bday " B ) C_ On -> Ord U. ( bday " B ) ) |
| 34 |
32 33
|
ax-mp |
|- Ord U. ( bday " B ) |
| 35 |
|
ordsssuc |
|- ( ( dom b e. On /\ Ord U. ( bday " B ) ) -> ( dom b C_ U. ( bday " B ) <-> dom b e. suc U. ( bday " B ) ) ) |
| 36 |
34 35
|
mpan2 |
|- ( dom b e. On -> ( dom b C_ U. ( bday " B ) <-> dom b e. suc U. ( bday " B ) ) ) |
| 37 |
12 28 36
|
3syl |
|- ( ( ( ( A C_ No /\ A e. _V ) /\ ( B C_ No /\ B e. _V ) ) /\ ( b e. B /\ -. ( b |` dom S ) ( dom b C_ U. ( bday " B ) <-> dom b e. suc U. ( bday " B ) ) ) |
| 38 |
27 37
|
mpbid |
|- ( ( ( ( A C_ No /\ A e. _V ) /\ ( B C_ No /\ B e. _V ) ) /\ ( b e. B /\ -. ( b |` dom S ) dom b e. suc U. ( bday " B ) ) |
| 39 |
16 38
|
sselid |
|- ( ( ( ( A C_ No /\ A e. _V ) /\ ( B C_ No /\ B e. _V ) ) /\ ( b e. B /\ -. ( b |` dom S ) dom b e. ( dom S u. suc U. ( bday " B ) ) ) |
| 40 |
|
eleq2 |
|- ( ( dom S u. suc U. ( bday " B ) ) = dom b -> ( dom b e. ( dom S u. suc U. ( bday " B ) ) <-> dom b e. dom b ) ) |
| 41 |
39 40
|
syl5ibcom |
|- ( ( ( ( A C_ No /\ A e. _V ) /\ ( B C_ No /\ B e. _V ) ) /\ ( b e. B /\ -. ( b |` dom S ) ( ( dom S u. suc U. ( bday " B ) ) = dom b -> dom b e. dom b ) ) |
| 42 |
15 41
|
mtod |
|- ( ( ( ( A C_ No /\ A e. _V ) /\ ( B C_ No /\ B e. _V ) ) /\ ( b e. B /\ -. ( b |` dom S ) -. ( dom S u. suc U. ( bday " B ) ) = dom b ) |
| 43 |
2
|
dmeqi |
|- dom Z = dom ( S u. ( ( suc U. ( bday " B ) \ dom S ) X. { 1o } ) ) |
| 44 |
|
dmun |
|- dom ( S u. ( ( suc U. ( bday " B ) \ dom S ) X. { 1o } ) ) = ( dom S u. dom ( ( suc U. ( bday " B ) \ dom S ) X. { 1o } ) ) |
| 45 |
43 44
|
eqtri |
|- dom Z = ( dom S u. dom ( ( suc U. ( bday " B ) \ dom S ) X. { 1o } ) ) |
| 46 |
|
1oex |
|- 1o e. _V |
| 47 |
46
|
snnz |
|- { 1o } =/= (/) |
| 48 |
|
dmxp |
|- ( { 1o } =/= (/) -> dom ( ( suc U. ( bday " B ) \ dom S ) X. { 1o } ) = ( suc U. ( bday " B ) \ dom S ) ) |
| 49 |
47 48
|
ax-mp |
|- dom ( ( suc U. ( bday " B ) \ dom S ) X. { 1o } ) = ( suc U. ( bday " B ) \ dom S ) |
| 50 |
49
|
uneq2i |
|- ( dom S u. dom ( ( suc U. ( bday " B ) \ dom S ) X. { 1o } ) ) = ( dom S u. ( suc U. ( bday " B ) \ dom S ) ) |
| 51 |
|
undif2 |
|- ( dom S u. ( suc U. ( bday " B ) \ dom S ) ) = ( dom S u. suc U. ( bday " B ) ) |
| 52 |
45 50 51
|
3eqtri |
|- dom Z = ( dom S u. suc U. ( bday " B ) ) |
| 53 |
|
dmeq |
|- ( Z = b -> dom Z = dom b ) |
| 54 |
52 53
|
eqtr3id |
|- ( Z = b -> ( dom S u. suc U. ( bday " B ) ) = dom b ) |
| 55 |
42 54
|
nsyl |
|- ( ( ( ( A C_ No /\ A e. _V ) /\ ( B C_ No /\ B e. _V ) ) /\ ( b e. B /\ -. ( b |` dom S ) -. Z = b ) |
| 56 |
|
df-ne |
|- ( Z =/= b <-> -. Z = b ) |
| 57 |
|
notnotr |
|- ( -. -. dom ( b |` dom S ) = dom S -> dom ( b |` dom S ) = dom S ) |
| 58 |
|
simpr |
|- ( ( ( ( ( ( A C_ No /\ A e. _V ) /\ ( B C_ No /\ B e. _V ) ) /\ ( b e. B /\ -. ( b |` dom S ) |^| { p e. On | ( Z ` p ) =/= ( b ` p ) } e. dom S ) |
| 59 |
58
|
fvresd |
|- ( ( ( ( ( ( A C_ No /\ A e. _V ) /\ ( B C_ No /\ B e. _V ) ) /\ ( b e. B /\ -. ( b |` dom S ) ( ( Z |` dom S ) ` |^| { p e. On | ( Z ` p ) =/= ( b ` p ) } ) = ( Z ` |^| { p e. On | ( Z ` p ) =/= ( b ` p ) } ) ) |
| 60 |
2
|
reseq1i |
|- ( Z |` dom S ) = ( ( S u. ( ( suc U. ( bday " B ) \ dom S ) X. { 1o } ) ) |` dom S ) |
| 61 |
|
resundir |
|- ( ( S u. ( ( suc U. ( bday " B ) \ dom S ) X. { 1o } ) ) |` dom S ) = ( ( S |` dom S ) u. ( ( ( suc U. ( bday " B ) \ dom S ) X. { 1o } ) |` dom S ) ) |
| 62 |
|
df-res |
|- ( ( ( suc U. ( bday " B ) \ dom S ) X. { 1o } ) |` dom S ) = ( ( ( suc U. ( bday " B ) \ dom S ) X. { 1o } ) i^i ( dom S X. _V ) ) |
| 63 |
|
disjdifr |
|- ( ( suc U. ( bday " B ) \ dom S ) i^i dom S ) = (/) |
| 64 |
|
xpdisj1 |
|- ( ( ( suc U. ( bday " B ) \ dom S ) i^i dom S ) = (/) -> ( ( ( suc U. ( bday " B ) \ dom S ) X. { 1o } ) i^i ( dom S X. _V ) ) = (/) ) |
| 65 |
63 64
|
ax-mp |
|- ( ( ( suc U. ( bday " B ) \ dom S ) X. { 1o } ) i^i ( dom S X. _V ) ) = (/) |
| 66 |
62 65
|
eqtri |
|- ( ( ( suc U. ( bday " B ) \ dom S ) X. { 1o } ) |` dom S ) = (/) |
| 67 |
66
|
uneq2i |
|- ( ( S |` dom S ) u. ( ( ( suc U. ( bday " B ) \ dom S ) X. { 1o } ) |` dom S ) ) = ( ( S |` dom S ) u. (/) ) |
| 68 |
|
un0 |
|- ( ( S |` dom S ) u. (/) ) = ( S |` dom S ) |
| 69 |
67 68
|
eqtri |
|- ( ( S |` dom S ) u. ( ( ( suc U. ( bday " B ) \ dom S ) X. { 1o } ) |` dom S ) ) = ( S |` dom S ) |
| 70 |
60 61 69
|
3eqtri |
|- ( Z |` dom S ) = ( S |` dom S ) |
| 71 |
|
simplll |
|- ( ( ( ( ( A C_ No /\ A e. _V ) /\ ( B C_ No /\ B e. _V ) ) /\ ( b e. B /\ -. ( b |` dom S ) ( A C_ No /\ A e. _V ) ) |
| 72 |
1
|
nosupno |
|- ( ( A C_ No /\ A e. _V ) -> S e. No ) |
| 73 |
71 72
|
syl |
|- ( ( ( ( ( A C_ No /\ A e. _V ) /\ ( B C_ No /\ B e. _V ) ) /\ ( b e. B /\ -. ( b |` dom S ) S e. No ) |
| 74 |
73
|
adantr |
|- ( ( ( ( ( ( A C_ No /\ A e. _V ) /\ ( B C_ No /\ B e. _V ) ) /\ ( b e. B /\ -. ( b |` dom S ) S e. No ) |
| 75 |
|
nofun |
|- ( S e. No -> Fun S ) |
| 76 |
74 75
|
syl |
|- ( ( ( ( ( ( A C_ No /\ A e. _V ) /\ ( B C_ No /\ B e. _V ) ) /\ ( b e. B /\ -. ( b |` dom S ) Fun S ) |
| 77 |
|
funrel |
|- ( Fun S -> Rel S ) |
| 78 |
|
resdm |
|- ( Rel S -> ( S |` dom S ) = S ) |
| 79 |
76 77 78
|
3syl |
|- ( ( ( ( ( ( A C_ No /\ A e. _V ) /\ ( B C_ No /\ B e. _V ) ) /\ ( b e. B /\ -. ( b |` dom S ) ( S |` dom S ) = S ) |
| 80 |
70 79
|
eqtrid |
|- ( ( ( ( ( ( A C_ No /\ A e. _V ) /\ ( B C_ No /\ B e. _V ) ) /\ ( b e. B /\ -. ( b |` dom S ) ( Z |` dom S ) = S ) |
| 81 |
80
|
fveq1d |
|- ( ( ( ( ( ( A C_ No /\ A e. _V ) /\ ( B C_ No /\ B e. _V ) ) /\ ( b e. B /\ -. ( b |` dom S ) ( ( Z |` dom S ) ` |^| { p e. On | ( Z ` p ) =/= ( b ` p ) } ) = ( S ` |^| { p e. On | ( Z ` p ) =/= ( b ` p ) } ) ) |
| 82 |
59 81
|
eqtr3d |
|- ( ( ( ( ( ( A C_ No /\ A e. _V ) /\ ( B C_ No /\ B e. _V ) ) /\ ( b e. B /\ -. ( b |` dom S ) ( Z ` |^| { p e. On | ( Z ` p ) =/= ( b ` p ) } ) = ( S ` |^| { p e. On | ( Z ` p ) =/= ( b ` p ) } ) ) |
| 83 |
|
simp-4l |
|- ( ( ( ( ( A C_ No /\ A e. _V ) /\ ( B C_ No /\ B e. _V ) ) /\ ( b e. B /\ -. ( b |` dom S ) A C_ No ) |
| 84 |
|
simp-4r |
|- ( ( ( ( ( A C_ No /\ A e. _V ) /\ ( B C_ No /\ B e. _V ) ) /\ ( b e. B /\ -. ( b |` dom S ) A e. _V ) |
| 85 |
|
simplrr |
|- ( ( ( ( A C_ No /\ A e. _V ) /\ ( B C_ No /\ B e. _V ) ) /\ ( b e. B /\ -. ( b |` dom S ) B e. _V ) |
| 86 |
85
|
adantr |
|- ( ( ( ( ( A C_ No /\ A e. _V ) /\ ( B C_ No /\ B e. _V ) ) /\ ( b e. B /\ -. ( b |` dom S ) B e. _V ) |
| 87 |
1 2
|
noetasuplem1 |
|- ( ( A C_ No /\ A e. _V /\ B e. _V ) -> Z e. No ) |
| 88 |
83 84 86 87
|
syl3anc |
|- ( ( ( ( ( A C_ No /\ A e. _V ) /\ ( B C_ No /\ B e. _V ) ) /\ ( b e. B /\ -. ( b |` dom S ) Z e. No ) |
| 89 |
88
|
adantr |
|- ( ( ( ( ( ( A C_ No /\ A e. _V ) /\ ( B C_ No /\ B e. _V ) ) /\ ( b e. B /\ -. ( b |` dom S ) Z e. No ) |
| 90 |
12
|
adantr |
|- ( ( ( ( ( A C_ No /\ A e. _V ) /\ ( B C_ No /\ B e. _V ) ) /\ ( b e. B /\ -. ( b |` dom S ) b e. No ) |
| 91 |
90
|
adantr |
|- ( ( ( ( ( ( A C_ No /\ A e. _V ) /\ ( B C_ No /\ B e. _V ) ) /\ ( b e. B /\ -. ( b |` dom S ) b e. No ) |
| 92 |
|
simplr |
|- ( ( ( ( ( ( A C_ No /\ A e. _V ) /\ ( B C_ No /\ B e. _V ) ) /\ ( b e. B /\ -. ( b |` dom S ) Z =/= b ) |
| 93 |
|
nosepne |
|- ( ( Z e. No /\ b e. No /\ Z =/= b ) -> ( Z ` |^| { p e. On | ( Z ` p ) =/= ( b ` p ) } ) =/= ( b ` |^| { p e. On | ( Z ` p ) =/= ( b ` p ) } ) ) |
| 94 |
89 91 92 93
|
syl3anc |
|- ( ( ( ( ( ( A C_ No /\ A e. _V ) /\ ( B C_ No /\ B e. _V ) ) /\ ( b e. B /\ -. ( b |` dom S ) ( Z ` |^| { p e. On | ( Z ` p ) =/= ( b ` p ) } ) =/= ( b ` |^| { p e. On | ( Z ` p ) =/= ( b ` p ) } ) ) |
| 95 |
82 94
|
eqnetrrd |
|- ( ( ( ( ( ( A C_ No /\ A e. _V ) /\ ( B C_ No /\ B e. _V ) ) /\ ( b e. B /\ -. ( b |` dom S ) ( S ` |^| { p e. On | ( Z ` p ) =/= ( b ` p ) } ) =/= ( b ` |^| { p e. On | ( Z ` p ) =/= ( b ` p ) } ) ) |
| 96 |
58
|
fvresd |
|- ( ( ( ( ( ( A C_ No /\ A e. _V ) /\ ( B C_ No /\ B e. _V ) ) /\ ( b e. B /\ -. ( b |` dom S ) ( ( b |` dom S ) ` |^| { p e. On | ( Z ` p ) =/= ( b ` p ) } ) = ( b ` |^| { p e. On | ( Z ` p ) =/= ( b ` p ) } ) ) |
| 97 |
95 96
|
neeqtrrd |
|- ( ( ( ( ( ( A C_ No /\ A e. _V ) /\ ( B C_ No /\ B e. _V ) ) /\ ( b e. B /\ -. ( b |` dom S ) ( S ` |^| { p e. On | ( Z ` p ) =/= ( b ` p ) } ) =/= ( ( b |` dom S ) ` |^| { p e. On | ( Z ` p ) =/= ( b ` p ) } ) ) |
| 98 |
|
fveq2 |
|- ( q = |^| { p e. On | ( Z ` p ) =/= ( b ` p ) } -> ( ( b |` dom S ) ` q ) = ( ( b |` dom S ) ` |^| { p e. On | ( Z ` p ) =/= ( b ` p ) } ) ) |
| 99 |
|
fveq2 |
|- ( q = |^| { p e. On | ( Z ` p ) =/= ( b ` p ) } -> ( S ` q ) = ( S ` |^| { p e. On | ( Z ` p ) =/= ( b ` p ) } ) ) |
| 100 |
98 99
|
neeq12d |
|- ( q = |^| { p e. On | ( Z ` p ) =/= ( b ` p ) } -> ( ( ( b |` dom S ) ` q ) =/= ( S ` q ) <-> ( ( b |` dom S ) ` |^| { p e. On | ( Z ` p ) =/= ( b ` p ) } ) =/= ( S ` |^| { p e. On | ( Z ` p ) =/= ( b ` p ) } ) ) ) |
| 101 |
|
df-ne |
|- ( ( ( b |` dom S ) ` q ) =/= ( S ` q ) <-> -. ( ( b |` dom S ) ` q ) = ( S ` q ) ) |
| 102 |
|
necom |
|- ( ( ( b |` dom S ) ` |^| { p e. On | ( Z ` p ) =/= ( b ` p ) } ) =/= ( S ` |^| { p e. On | ( Z ` p ) =/= ( b ` p ) } ) <-> ( S ` |^| { p e. On | ( Z ` p ) =/= ( b ` p ) } ) =/= ( ( b |` dom S ) ` |^| { p e. On | ( Z ` p ) =/= ( b ` p ) } ) ) |
| 103 |
100 101 102
|
3bitr3g |
|- ( q = |^| { p e. On | ( Z ` p ) =/= ( b ` p ) } -> ( -. ( ( b |` dom S ) ` q ) = ( S ` q ) <-> ( S ` |^| { p e. On | ( Z ` p ) =/= ( b ` p ) } ) =/= ( ( b |` dom S ) ` |^| { p e. On | ( Z ` p ) =/= ( b ` p ) } ) ) ) |
| 104 |
103
|
rspcev |
|- ( ( |^| { p e. On | ( Z ` p ) =/= ( b ` p ) } e. dom S /\ ( S ` |^| { p e. On | ( Z ` p ) =/= ( b ` p ) } ) =/= ( ( b |` dom S ) ` |^| { p e. On | ( Z ` p ) =/= ( b ` p ) } ) ) -> E. q e. dom S -. ( ( b |` dom S ) ` q ) = ( S ` q ) ) |
| 105 |
58 97 104
|
syl2anc |
|- ( ( ( ( ( ( A C_ No /\ A e. _V ) /\ ( B C_ No /\ B e. _V ) ) /\ ( b e. B /\ -. ( b |` dom S ) E. q e. dom S -. ( ( b |` dom S ) ` q ) = ( S ` q ) ) |
| 106 |
|
rexeq |
|- ( dom ( b |` dom S ) = dom S -> ( E. q e. dom ( b |` dom S ) -. ( ( b |` dom S ) ` q ) = ( S ` q ) <-> E. q e. dom S -. ( ( b |` dom S ) ` q ) = ( S ` q ) ) ) |
| 107 |
105 106
|
syl5ibrcom |
|- ( ( ( ( ( ( A C_ No /\ A e. _V ) /\ ( B C_ No /\ B e. _V ) ) /\ ( b e. B /\ -. ( b |` dom S ) ( dom ( b |` dom S ) = dom S -> E. q e. dom ( b |` dom S ) -. ( ( b |` dom S ) ` q ) = ( S ` q ) ) ) |
| 108 |
|
rexnal |
|- ( E. q e. dom ( b |` dom S ) -. ( ( b |` dom S ) ` q ) = ( S ` q ) <-> -. A. q e. dom ( b |` dom S ) ( ( b |` dom S ) ` q ) = ( S ` q ) ) |
| 109 |
107 108
|
imbitrdi |
|- ( ( ( ( ( ( A C_ No /\ A e. _V ) /\ ( B C_ No /\ B e. _V ) ) /\ ( b e. B /\ -. ( b |` dom S ) ( dom ( b |` dom S ) = dom S -> -. A. q e. dom ( b |` dom S ) ( ( b |` dom S ) ` q ) = ( S ` q ) ) ) |
| 110 |
57 109
|
syl5 |
|- ( ( ( ( ( ( A C_ No /\ A e. _V ) /\ ( B C_ No /\ B e. _V ) ) /\ ( b e. B /\ -. ( b |` dom S ) ( -. -. dom ( b |` dom S ) = dom S -> -. A. q e. dom ( b |` dom S ) ( ( b |` dom S ) ` q ) = ( S ` q ) ) ) |
| 111 |
110
|
orrd |
|- ( ( ( ( ( ( A C_ No /\ A e. _V ) /\ ( B C_ No /\ B e. _V ) ) /\ ( b e. B /\ -. ( b |` dom S ) ( -. dom ( b |` dom S ) = dom S \/ -. A. q e. dom ( b |` dom S ) ( ( b |` dom S ) ` q ) = ( S ` q ) ) ) |
| 112 |
|
nofun |
|- ( b e. No -> Fun b ) |
| 113 |
|
funres |
|- ( Fun b -> Fun ( b |` dom S ) ) |
| 114 |
91 112 113
|
3syl |
|- ( ( ( ( ( ( A C_ No /\ A e. _V ) /\ ( B C_ No /\ B e. _V ) ) /\ ( b e. B /\ -. ( b |` dom S ) Fun ( b |` dom S ) ) |
| 115 |
|
eqfunfv |
|- ( ( Fun ( b |` dom S ) /\ Fun S ) -> ( ( b |` dom S ) = S <-> ( dom ( b |` dom S ) = dom S /\ A. q e. dom ( b |` dom S ) ( ( b |` dom S ) ` q ) = ( S ` q ) ) ) ) |
| 116 |
114 76 115
|
syl2anc |
|- ( ( ( ( ( ( A C_ No /\ A e. _V ) /\ ( B C_ No /\ B e. _V ) ) /\ ( b e. B /\ -. ( b |` dom S ) ( ( b |` dom S ) = S <-> ( dom ( b |` dom S ) = dom S /\ A. q e. dom ( b |` dom S ) ( ( b |` dom S ) ` q ) = ( S ` q ) ) ) ) |
| 117 |
|
ianor |
|- ( -. ( dom ( b |` dom S ) = dom S /\ A. q e. dom ( b |` dom S ) ( ( b |` dom S ) ` q ) = ( S ` q ) ) <-> ( -. dom ( b |` dom S ) = dom S \/ -. A. q e. dom ( b |` dom S ) ( ( b |` dom S ) ` q ) = ( S ` q ) ) ) |
| 118 |
117
|
con1bii |
|- ( -. ( -. dom ( b |` dom S ) = dom S \/ -. A. q e. dom ( b |` dom S ) ( ( b |` dom S ) ` q ) = ( S ` q ) ) <-> ( dom ( b |` dom S ) = dom S /\ A. q e. dom ( b |` dom S ) ( ( b |` dom S ) ` q ) = ( S ` q ) ) ) |
| 119 |
116 118
|
bitr4di |
|- ( ( ( ( ( ( A C_ No /\ A e. _V ) /\ ( B C_ No /\ B e. _V ) ) /\ ( b e. B /\ -. ( b |` dom S ) ( ( b |` dom S ) = S <-> -. ( -. dom ( b |` dom S ) = dom S \/ -. A. q e. dom ( b |` dom S ) ( ( b |` dom S ) ` q ) = ( S ` q ) ) ) ) |
| 120 |
119
|
con2bid |
|- ( ( ( ( ( ( A C_ No /\ A e. _V ) /\ ( B C_ No /\ B e. _V ) ) /\ ( b e. B /\ -. ( b |` dom S ) ( ( -. dom ( b |` dom S ) = dom S \/ -. A. q e. dom ( b |` dom S ) ( ( b |` dom S ) ` q ) = ( S ` q ) ) <-> -. ( b |` dom S ) = S ) ) |
| 121 |
111 120
|
mpbid |
|- ( ( ( ( ( ( A C_ No /\ A e. _V ) /\ ( B C_ No /\ B e. _V ) ) /\ ( b e. B /\ -. ( b |` dom S ) -. ( b |` dom S ) = S ) |
| 122 |
121
|
pm2.21d |
|- ( ( ( ( ( ( A C_ No /\ A e. _V ) /\ ( B C_ No /\ B e. _V ) ) /\ ( b e. B /\ -. ( b |` dom S ) ( ( b |` dom S ) = S -> Z |
| 123 |
80
|
breq1d |
|- ( ( ( ( ( ( A C_ No /\ A e. _V ) /\ ( B C_ No /\ B e. _V ) ) /\ ( b e. B /\ -. ( b |` dom S ) ( ( Z |` dom S ) S |
| 124 |
|
nodmon |
|- ( S e. No -> dom S e. On ) |
| 125 |
74 124
|
syl |
|- ( ( ( ( ( ( A C_ No /\ A e. _V ) /\ ( B C_ No /\ B e. _V ) ) /\ ( b e. B /\ -. ( b |` dom S ) dom S e. On ) |
| 126 |
|
sltres |
|- ( ( Z e. No /\ b e. No /\ dom S e. On ) -> ( ( Z |` dom S ) Z |
| 127 |
89 91 125 126
|
syl3anc |
|- ( ( ( ( ( ( A C_ No /\ A e. _V ) /\ ( B C_ No /\ B e. _V ) ) /\ ( b e. B /\ -. ( b |` dom S ) ( ( Z |` dom S ) Z |
| 128 |
123 127
|
sylbird |
|- ( ( ( ( ( ( A C_ No /\ A e. _V ) /\ ( B C_ No /\ B e. _V ) ) /\ ( b e. B /\ -. ( b |` dom S ) ( S Z |
| 129 |
|
simplrr |
|- ( ( ( ( ( A C_ No /\ A e. _V ) /\ ( B C_ No /\ B e. _V ) ) /\ ( b e. B /\ -. ( b |` dom S ) -. ( b |` dom S ) |
| 130 |
129
|
adantr |
|- ( ( ( ( ( ( A C_ No /\ A e. _V ) /\ ( B C_ No /\ B e. _V ) ) /\ ( b e. B /\ -. ( b |` dom S ) -. ( b |` dom S ) |
| 131 |
|
noreson |
|- ( ( b e. No /\ dom S e. On ) -> ( b |` dom S ) e. No ) |
| 132 |
91 125 131
|
syl2anc |
|- ( ( ( ( ( ( A C_ No /\ A e. _V ) /\ ( B C_ No /\ B e. _V ) ) /\ ( b e. B /\ -. ( b |` dom S ) ( b |` dom S ) e. No ) |
| 133 |
|
sltso |
|- |
| 134 |
|
sotric |
|- ( ( ( ( b |` dom S ) -. ( ( b |` dom S ) = S \/ S |
| 135 |
133 134
|
mpan |
|- ( ( ( b |` dom S ) e. No /\ S e. No ) -> ( ( b |` dom S ) -. ( ( b |` dom S ) = S \/ S |
| 136 |
132 74 135
|
syl2anc |
|- ( ( ( ( ( ( A C_ No /\ A e. _V ) /\ ( B C_ No /\ B e. _V ) ) /\ ( b e. B /\ -. ( b |` dom S ) ( ( b |` dom S ) -. ( ( b |` dom S ) = S \/ S |
| 137 |
136
|
con2bid |
|- ( ( ( ( ( ( A C_ No /\ A e. _V ) /\ ( B C_ No /\ B e. _V ) ) /\ ( b e. B /\ -. ( b |` dom S ) ( ( ( b |` dom S ) = S \/ S -. ( b |` dom S ) |
| 138 |
130 137
|
mpbird |
|- ( ( ( ( ( ( A C_ No /\ A e. _V ) /\ ( B C_ No /\ B e. _V ) ) /\ ( b e. B /\ -. ( b |` dom S ) ( ( b |` dom S ) = S \/ S |
| 139 |
122 128 138
|
mpjaod |
|- ( ( ( ( ( ( A C_ No /\ A e. _V ) /\ ( B C_ No /\ B e. _V ) ) /\ ( b e. B /\ -. ( b |` dom S ) Z |
| 140 |
88
|
adantr |
|- ( ( ( ( ( ( A C_ No /\ A e. _V ) /\ ( B C_ No /\ B e. _V ) ) /\ ( b e. B /\ -. ( b |` dom S ) Z e. No ) |
| 141 |
90
|
adantr |
|- ( ( ( ( ( ( A C_ No /\ A e. _V ) /\ ( B C_ No /\ B e. _V ) ) /\ ( b e. B /\ -. ( b |` dom S ) b e. No ) |
| 142 |
|
simplr |
|- ( ( ( ( ( ( A C_ No /\ A e. _V ) /\ ( B C_ No /\ B e. _V ) ) /\ ( b e. B /\ -. ( b |` dom S ) Z =/= b ) |
| 143 |
2
|
fveq1i |
|- ( Z ` |^| { p e. On | ( Z ` p ) =/= ( b ` p ) } ) = ( ( S u. ( ( suc U. ( bday " B ) \ dom S ) X. { 1o } ) ) ` |^| { p e. On | ( Z ` p ) =/= ( b ` p ) } ) |
| 144 |
|
simp-4l |
|- ( ( ( ( ( ( A C_ No /\ A e. _V ) /\ ( B C_ No /\ B e. _V ) ) /\ ( b e. B /\ -. ( b |` dom S ) ( A C_ No /\ A e. _V ) ) |
| 145 |
144 72 75
|
3syl |
|- ( ( ( ( ( ( A C_ No /\ A e. _V ) /\ ( B C_ No /\ B e. _V ) ) /\ ( b e. B /\ -. ( b |` dom S ) Fun S ) |
| 146 |
|
funfn |
|- ( Fun S <-> S Fn dom S ) |
| 147 |
145 146
|
sylib |
|- ( ( ( ( ( ( A C_ No /\ A e. _V ) /\ ( B C_ No /\ B e. _V ) ) /\ ( b e. B /\ -. ( b |` dom S ) S Fn dom S ) |
| 148 |
46
|
fconst |
|- ( ( suc U. ( bday " B ) \ dom S ) X. { 1o } ) : ( suc U. ( bday " B ) \ dom S ) --> { 1o } |
| 149 |
|
ffn |
|- ( ( ( suc U. ( bday " B ) \ dom S ) X. { 1o } ) : ( suc U. ( bday " B ) \ dom S ) --> { 1o } -> ( ( suc U. ( bday " B ) \ dom S ) X. { 1o } ) Fn ( suc U. ( bday " B ) \ dom S ) ) |
| 150 |
148 149
|
ax-mp |
|- ( ( suc U. ( bday " B ) \ dom S ) X. { 1o } ) Fn ( suc U. ( bday " B ) \ dom S ) |
| 151 |
150
|
a1i |
|- ( ( ( ( ( ( A C_ No /\ A e. _V ) /\ ( B C_ No /\ B e. _V ) ) /\ ( b e. B /\ -. ( b |` dom S ) ( ( suc U. ( bday " B ) \ dom S ) X. { 1o } ) Fn ( suc U. ( bday " B ) \ dom S ) ) |
| 152 |
|
disjdif |
|- ( dom S i^i ( suc U. ( bday " B ) \ dom S ) ) = (/) |
| 153 |
152
|
a1i |
|- ( ( ( ( ( ( A C_ No /\ A e. _V ) /\ ( B C_ No /\ B e. _V ) ) /\ ( b e. B /\ -. ( b |` dom S ) ( dom S i^i ( suc U. ( bday " B ) \ dom S ) ) = (/) ) |
| 154 |
|
necom |
|- ( ( Z ` p ) =/= ( b ` p ) <-> ( b ` p ) =/= ( Z ` p ) ) |
| 155 |
154
|
rabbii |
|- { p e. On | ( Z ` p ) =/= ( b ` p ) } = { p e. On | ( b ` p ) =/= ( Z ` p ) } |
| 156 |
155
|
inteqi |
|- |^| { p e. On | ( Z ` p ) =/= ( b ` p ) } = |^| { p e. On | ( b ` p ) =/= ( Z ` p ) } |
| 157 |
142
|
necomd |
|- ( ( ( ( ( ( A C_ No /\ A e. _V ) /\ ( B C_ No /\ B e. _V ) ) /\ ( b e. B /\ -. ( b |` dom S ) b =/= Z ) |
| 158 |
|
nosepssdm |
|- ( ( b e. No /\ Z e. No /\ b =/= Z ) -> |^| { p e. On | ( b ` p ) =/= ( Z ` p ) } C_ dom b ) |
| 159 |
141 140 157 158
|
syl3anc |
|- ( ( ( ( ( ( A C_ No /\ A e. _V ) /\ ( B C_ No /\ B e. _V ) ) /\ ( b e. B /\ -. ( b |` dom S ) |^| { p e. On | ( b ` p ) =/= ( Z ` p ) } C_ dom b ) |
| 160 |
156 159
|
eqsstrid |
|- ( ( ( ( ( ( A C_ No /\ A e. _V ) /\ ( B C_ No /\ B e. _V ) ) /\ ( b e. B /\ -. ( b |` dom S ) |^| { p e. On | ( Z ` p ) =/= ( b ` p ) } C_ dom b ) |
| 161 |
141 17
|
syl |
|- ( ( ( ( ( ( A C_ No /\ A e. _V ) /\ ( B C_ No /\ B e. _V ) ) /\ ( b e. B /\ -. ( b |` dom S ) ( bday ` b ) = dom b ) |
| 162 |
|
simplrl |
|- ( ( ( ( A C_ No /\ A e. _V ) /\ ( B C_ No /\ B e. _V ) ) /\ ( b e. B /\ -. ( b |` dom S ) B C_ No ) |
| 163 |
162
|
adantr |
|- ( ( ( ( ( A C_ No /\ A e. _V ) /\ ( B C_ No /\ B e. _V ) ) /\ ( b e. B /\ -. ( b |` dom S ) B C_ No ) |
| 164 |
163
|
adantr |
|- ( ( ( ( ( ( A C_ No /\ A e. _V ) /\ ( B C_ No /\ B e. _V ) ) /\ ( b e. B /\ -. ( b |` dom S ) B C_ No ) |
| 165 |
|
simplrl |
|- ( ( ( ( ( A C_ No /\ A e. _V ) /\ ( B C_ No /\ B e. _V ) ) /\ ( b e. B /\ -. ( b |` dom S ) b e. B ) |
| 166 |
165
|
adantr |
|- ( ( ( ( ( ( A C_ No /\ A e. _V ) /\ ( B C_ No /\ B e. _V ) ) /\ ( b e. B /\ -. ( b |` dom S ) b e. B ) |
| 167 |
164 166 23
|
syl2anc |
|- ( ( ( ( ( ( A C_ No /\ A e. _V ) /\ ( B C_ No /\ B e. _V ) ) /\ ( b e. B /\ -. ( b |` dom S ) ( bday ` b ) e. ( bday " B ) ) |
| 168 |
161 167
|
eqeltrrd |
|- ( ( ( ( ( ( A C_ No /\ A e. _V ) /\ ( B C_ No /\ B e. _V ) ) /\ ( b e. B /\ -. ( b |` dom S ) dom b e. ( bday " B ) ) |
| 169 |
168 26
|
syl |
|- ( ( ( ( ( ( A C_ No /\ A e. _V ) /\ ( B C_ No /\ B e. _V ) ) /\ ( b e. B /\ -. ( b |` dom S ) dom b C_ U. ( bday " B ) ) |
| 170 |
141 28 36
|
3syl |
|- ( ( ( ( ( ( A C_ No /\ A e. _V ) /\ ( B C_ No /\ B e. _V ) ) /\ ( b e. B /\ -. ( b |` dom S ) ( dom b C_ U. ( bday " B ) <-> dom b e. suc U. ( bday " B ) ) ) |
| 171 |
169 170
|
mpbid |
|- ( ( ( ( ( ( A C_ No /\ A e. _V ) /\ ( B C_ No /\ B e. _V ) ) /\ ( b e. B /\ -. ( b |` dom S ) dom b e. suc U. ( bday " B ) ) |
| 172 |
|
nosepon |
|- ( ( Z e. No /\ b e. No /\ Z =/= b ) -> |^| { p e. On | ( Z ` p ) =/= ( b ` p ) } e. On ) |
| 173 |
140 141 142 172
|
syl3anc |
|- ( ( ( ( ( ( A C_ No /\ A e. _V ) /\ ( B C_ No /\ B e. _V ) ) /\ ( b e. B /\ -. ( b |` dom S ) |^| { p e. On | ( Z ` p ) =/= ( b ` p ) } e. On ) |
| 174 |
|
eloni |
|- ( |^| { p e. On | ( Z ` p ) =/= ( b ` p ) } e. On -> Ord |^| { p e. On | ( Z ` p ) =/= ( b ` p ) } ) |
| 175 |
|
ordsuc |
|- ( Ord U. ( bday " B ) <-> Ord suc U. ( bday " B ) ) |
| 176 |
34 175
|
mpbi |
|- Ord suc U. ( bday " B ) |
| 177 |
|
ordtr2 |
|- ( ( Ord |^| { p e. On | ( Z ` p ) =/= ( b ` p ) } /\ Ord suc U. ( bday " B ) ) -> ( ( |^| { p e. On | ( Z ` p ) =/= ( b ` p ) } C_ dom b /\ dom b e. suc U. ( bday " B ) ) -> |^| { p e. On | ( Z ` p ) =/= ( b ` p ) } e. suc U. ( bday " B ) ) ) |
| 178 |
176 177
|
mpan2 |
|- ( Ord |^| { p e. On | ( Z ` p ) =/= ( b ` p ) } -> ( ( |^| { p e. On | ( Z ` p ) =/= ( b ` p ) } C_ dom b /\ dom b e. suc U. ( bday " B ) ) -> |^| { p e. On | ( Z ` p ) =/= ( b ` p ) } e. suc U. ( bday " B ) ) ) |
| 179 |
173 174 178
|
3syl |
|- ( ( ( ( ( ( A C_ No /\ A e. _V ) /\ ( B C_ No /\ B e. _V ) ) /\ ( b e. B /\ -. ( b |` dom S ) ( ( |^| { p e. On | ( Z ` p ) =/= ( b ` p ) } C_ dom b /\ dom b e. suc U. ( bday " B ) ) -> |^| { p e. On | ( Z ` p ) =/= ( b ` p ) } e. suc U. ( bday " B ) ) ) |
| 180 |
160 171 179
|
mp2and |
|- ( ( ( ( ( ( A C_ No /\ A e. _V ) /\ ( B C_ No /\ B e. _V ) ) /\ ( b e. B /\ -. ( b |` dom S ) |^| { p e. On | ( Z ` p ) =/= ( b ` p ) } e. suc U. ( bday " B ) ) |
| 181 |
|
simpr |
|- ( ( ( ( ( ( A C_ No /\ A e. _V ) /\ ( B C_ No /\ B e. _V ) ) /\ ( b e. B /\ -. ( b |` dom S ) dom S C_ |^| { p e. On | ( Z ` p ) =/= ( b ` p ) } ) |
| 182 |
144 72 124
|
3syl |
|- ( ( ( ( ( ( A C_ No /\ A e. _V ) /\ ( B C_ No /\ B e. _V ) ) /\ ( b e. B /\ -. ( b |` dom S ) dom S e. On ) |
| 183 |
|
ontri1 |
|- ( ( dom S e. On /\ |^| { p e. On | ( Z ` p ) =/= ( b ` p ) } e. On ) -> ( dom S C_ |^| { p e. On | ( Z ` p ) =/= ( b ` p ) } <-> -. |^| { p e. On | ( Z ` p ) =/= ( b ` p ) } e. dom S ) ) |
| 184 |
182 173 183
|
syl2anc |
|- ( ( ( ( ( ( A C_ No /\ A e. _V ) /\ ( B C_ No /\ B e. _V ) ) /\ ( b e. B /\ -. ( b |` dom S ) ( dom S C_ |^| { p e. On | ( Z ` p ) =/= ( b ` p ) } <-> -. |^| { p e. On | ( Z ` p ) =/= ( b ` p ) } e. dom S ) ) |
| 185 |
181 184
|
mpbid |
|- ( ( ( ( ( ( A C_ No /\ A e. _V ) /\ ( B C_ No /\ B e. _V ) ) /\ ( b e. B /\ -. ( b |` dom S ) -. |^| { p e. On | ( Z ` p ) =/= ( b ` p ) } e. dom S ) |
| 186 |
180 185
|
eldifd |
|- ( ( ( ( ( ( A C_ No /\ A e. _V ) /\ ( B C_ No /\ B e. _V ) ) /\ ( b e. B /\ -. ( b |` dom S ) |^| { p e. On | ( Z ` p ) =/= ( b ` p ) } e. ( suc U. ( bday " B ) \ dom S ) ) |
| 187 |
|
fvun2 |
|- ( ( S Fn dom S /\ ( ( suc U. ( bday " B ) \ dom S ) X. { 1o } ) Fn ( suc U. ( bday " B ) \ dom S ) /\ ( ( dom S i^i ( suc U. ( bday " B ) \ dom S ) ) = (/) /\ |^| { p e. On | ( Z ` p ) =/= ( b ` p ) } e. ( suc U. ( bday " B ) \ dom S ) ) ) -> ( ( S u. ( ( suc U. ( bday " B ) \ dom S ) X. { 1o } ) ) ` |^| { p e. On | ( Z ` p ) =/= ( b ` p ) } ) = ( ( ( suc U. ( bday " B ) \ dom S ) X. { 1o } ) ` |^| { p e. On | ( Z ` p ) =/= ( b ` p ) } ) ) |
| 188 |
147 151 153 186 187
|
syl112anc |
|- ( ( ( ( ( ( A C_ No /\ A e. _V ) /\ ( B C_ No /\ B e. _V ) ) /\ ( b e. B /\ -. ( b |` dom S ) ( ( S u. ( ( suc U. ( bday " B ) \ dom S ) X. { 1o } ) ) ` |^| { p e. On | ( Z ` p ) =/= ( b ` p ) } ) = ( ( ( suc U. ( bday " B ) \ dom S ) X. { 1o } ) ` |^| { p e. On | ( Z ` p ) =/= ( b ` p ) } ) ) |
| 189 |
143 188
|
eqtrid |
|- ( ( ( ( ( ( A C_ No /\ A e. _V ) /\ ( B C_ No /\ B e. _V ) ) /\ ( b e. B /\ -. ( b |` dom S ) ( Z ` |^| { p e. On | ( Z ` p ) =/= ( b ` p ) } ) = ( ( ( suc U. ( bday " B ) \ dom S ) X. { 1o } ) ` |^| { p e. On | ( Z ` p ) =/= ( b ` p ) } ) ) |
| 190 |
46
|
fvconst2 |
|- ( |^| { p e. On | ( Z ` p ) =/= ( b ` p ) } e. ( suc U. ( bday " B ) \ dom S ) -> ( ( ( suc U. ( bday " B ) \ dom S ) X. { 1o } ) ` |^| { p e. On | ( Z ` p ) =/= ( b ` p ) } ) = 1o ) |
| 191 |
186 190
|
syl |
|- ( ( ( ( ( ( A C_ No /\ A e. _V ) /\ ( B C_ No /\ B e. _V ) ) /\ ( b e. B /\ -. ( b |` dom S ) ( ( ( suc U. ( bday " B ) \ dom S ) X. { 1o } ) ` |^| { p e. On | ( Z ` p ) =/= ( b ` p ) } ) = 1o ) |
| 192 |
189 191
|
eqtrd |
|- ( ( ( ( ( ( A C_ No /\ A e. _V ) /\ ( B C_ No /\ B e. _V ) ) /\ ( b e. B /\ -. ( b |` dom S ) ( Z ` |^| { p e. On | ( Z ` p ) =/= ( b ` p ) } ) = 1o ) |
| 193 |
|
nosep1o |
|- ( ( ( Z e. No /\ b e. No /\ Z =/= b ) /\ ( Z ` |^| { p e. On | ( Z ` p ) =/= ( b ` p ) } ) = 1o ) -> Z |
| 194 |
140 141 142 192 193
|
syl31anc |
|- ( ( ( ( ( ( A C_ No /\ A e. _V ) /\ ( B C_ No /\ B e. _V ) ) /\ ( b e. B /\ -. ( b |` dom S ) Z |
| 195 |
|
simpr |
|- ( ( ( ( ( A C_ No /\ A e. _V ) /\ ( B C_ No /\ B e. _V ) ) /\ ( b e. B /\ -. ( b |` dom S ) Z =/= b ) |
| 196 |
88 90 195 172
|
syl3anc |
|- ( ( ( ( ( A C_ No /\ A e. _V ) /\ ( B C_ No /\ B e. _V ) ) /\ ( b e. B /\ -. ( b |` dom S ) |^| { p e. On | ( Z ` p ) =/= ( b ` p ) } e. On ) |
| 197 |
196 174
|
syl |
|- ( ( ( ( ( A C_ No /\ A e. _V ) /\ ( B C_ No /\ B e. _V ) ) /\ ( b e. B /\ -. ( b |` dom S ) Ord |^| { p e. On | ( Z ` p ) =/= ( b ` p ) } ) |
| 198 |
|
nodmord |
|- ( S e. No -> Ord dom S ) |
| 199 |
71 72 198
|
3syl |
|- ( ( ( ( ( A C_ No /\ A e. _V ) /\ ( B C_ No /\ B e. _V ) ) /\ ( b e. B /\ -. ( b |` dom S ) Ord dom S ) |
| 200 |
|
ordtri2or |
|- ( ( Ord |^| { p e. On | ( Z ` p ) =/= ( b ` p ) } /\ Ord dom S ) -> ( |^| { p e. On | ( Z ` p ) =/= ( b ` p ) } e. dom S \/ dom S C_ |^| { p e. On | ( Z ` p ) =/= ( b ` p ) } ) ) |
| 201 |
197 199 200
|
syl2anc |
|- ( ( ( ( ( A C_ No /\ A e. _V ) /\ ( B C_ No /\ B e. _V ) ) /\ ( b e. B /\ -. ( b |` dom S ) ( |^| { p e. On | ( Z ` p ) =/= ( b ` p ) } e. dom S \/ dom S C_ |^| { p e. On | ( Z ` p ) =/= ( b ` p ) } ) ) |
| 202 |
139 194 201
|
mpjaodan |
|- ( ( ( ( ( A C_ No /\ A e. _V ) /\ ( B C_ No /\ B e. _V ) ) /\ ( b e. B /\ -. ( b |` dom S ) Z |
| 203 |
202
|
ex |
|- ( ( ( ( A C_ No /\ A e. _V ) /\ ( B C_ No /\ B e. _V ) ) /\ ( b e. B /\ -. ( b |` dom S ) ( Z =/= b -> Z |
| 204 |
56 203
|
biimtrrid |
|- ( ( ( ( A C_ No /\ A e. _V ) /\ ( B C_ No /\ B e. _V ) ) /\ ( b e. B /\ -. ( b |` dom S ) ( -. Z = b -> Z |
| 205 |
55 204
|
mpd |
|- ( ( ( ( A C_ No /\ A e. _V ) /\ ( B C_ No /\ B e. _V ) ) /\ ( b e. B /\ -. ( b |` dom S ) Z |
| 206 |
205
|
expr |
|- ( ( ( ( A C_ No /\ A e. _V ) /\ ( B C_ No /\ B e. _V ) ) /\ b e. B ) -> ( -. ( b |` dom S ) Z |
| 207 |
9 206
|
sylbid |
|- ( ( ( ( A C_ No /\ A e. _V ) /\ ( B C_ No /\ B e. _V ) ) /\ b e. B ) -> ( A. a e. A a Z |
| 208 |
207
|
ralimdva |
|- ( ( ( A C_ No /\ A e. _V ) /\ ( B C_ No /\ B e. _V ) ) -> ( A. b e. B A. a e. A a A. b e. B Z |
| 209 |
3 208
|
biimtrid |
|- ( ( ( A C_ No /\ A e. _V ) /\ ( B C_ No /\ B e. _V ) ) -> ( A. a e. A A. b e. B a A. b e. B Z |
| 210 |
209
|
3impia |
|- ( ( ( A C_ No /\ A e. _V ) /\ ( B C_ No /\ B e. _V ) /\ A. a e. A A. b e. B a A. b e. B Z |