| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dmres |
|- dom ( A |` suc X ) = ( suc X i^i dom A ) |
| 2 |
|
simp11 |
|- ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ ( A ` X ) = 1o ) /\ -. A A e. No ) |
| 3 |
|
nodmord |
|- ( A e. No -> Ord dom A ) |
| 4 |
2 3
|
syl |
|- ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ ( A ` X ) = 1o ) /\ -. A Ord dom A ) |
| 5 |
|
ndmfv |
|- ( -. X e. dom A -> ( A ` X ) = (/) ) |
| 6 |
|
1n0 |
|- 1o =/= (/) |
| 7 |
6
|
necomi |
|- (/) =/= 1o |
| 8 |
|
neeq1 |
|- ( ( A ` X ) = (/) -> ( ( A ` X ) =/= 1o <-> (/) =/= 1o ) ) |
| 9 |
7 8
|
mpbiri |
|- ( ( A ` X ) = (/) -> ( A ` X ) =/= 1o ) |
| 10 |
9
|
neneqd |
|- ( ( A ` X ) = (/) -> -. ( A ` X ) = 1o ) |
| 11 |
5 10
|
syl |
|- ( -. X e. dom A -> -. ( A ` X ) = 1o ) |
| 12 |
11
|
con4i |
|- ( ( A ` X ) = 1o -> X e. dom A ) |
| 13 |
12
|
adantl |
|- ( ( ( A |` X ) = ( B |` X ) /\ ( A ` X ) = 1o ) -> X e. dom A ) |
| 14 |
13
|
3ad2ant2 |
|- ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ ( A ` X ) = 1o ) /\ -. A X e. dom A ) |
| 15 |
|
ordsucss |
|- ( Ord dom A -> ( X e. dom A -> suc X C_ dom A ) ) |
| 16 |
4 14 15
|
sylc |
|- ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ ( A ` X ) = 1o ) /\ -. A suc X C_ dom A ) |
| 17 |
|
dfss2 |
|- ( suc X C_ dom A <-> ( suc X i^i dom A ) = suc X ) |
| 18 |
16 17
|
sylib |
|- ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ ( A ` X ) = 1o ) /\ -. A ( suc X i^i dom A ) = suc X ) |
| 19 |
1 18
|
eqtrid |
|- ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ ( A ` X ) = 1o ) /\ -. A dom ( A |` suc X ) = suc X ) |
| 20 |
|
dmres |
|- dom ( B |` suc X ) = ( suc X i^i dom B ) |
| 21 |
|
simp12 |
|- ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ ( A ` X ) = 1o ) /\ -. A B e. No ) |
| 22 |
|
nodmord |
|- ( B e. No -> Ord dom B ) |
| 23 |
21 22
|
syl |
|- ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ ( A ` X ) = 1o ) /\ -. A Ord dom B ) |
| 24 |
|
nogesgn1o |
|- ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ ( A ` X ) = 1o ) /\ -. A ( B ` X ) = 1o ) |
| 25 |
|
ndmfv |
|- ( -. X e. dom B -> ( B ` X ) = (/) ) |
| 26 |
|
neeq1 |
|- ( ( B ` X ) = (/) -> ( ( B ` X ) =/= 1o <-> (/) =/= 1o ) ) |
| 27 |
7 26
|
mpbiri |
|- ( ( B ` X ) = (/) -> ( B ` X ) =/= 1o ) |
| 28 |
27
|
neneqd |
|- ( ( B ` X ) = (/) -> -. ( B ` X ) = 1o ) |
| 29 |
25 28
|
syl |
|- ( -. X e. dom B -> -. ( B ` X ) = 1o ) |
| 30 |
29
|
con4i |
|- ( ( B ` X ) = 1o -> X e. dom B ) |
| 31 |
24 30
|
syl |
|- ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ ( A ` X ) = 1o ) /\ -. A X e. dom B ) |
| 32 |
|
ordsucss |
|- ( Ord dom B -> ( X e. dom B -> suc X C_ dom B ) ) |
| 33 |
23 31 32
|
sylc |
|- ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ ( A ` X ) = 1o ) /\ -. A suc X C_ dom B ) |
| 34 |
|
dfss2 |
|- ( suc X C_ dom B <-> ( suc X i^i dom B ) = suc X ) |
| 35 |
33 34
|
sylib |
|- ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ ( A ` X ) = 1o ) /\ -. A ( suc X i^i dom B ) = suc X ) |
| 36 |
20 35
|
eqtrid |
|- ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ ( A ` X ) = 1o ) /\ -. A dom ( B |` suc X ) = suc X ) |
| 37 |
19 36
|
eqtr4d |
|- ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ ( A ` X ) = 1o ) /\ -. A dom ( A |` suc X ) = dom ( B |` suc X ) ) |
| 38 |
19
|
eleq2d |
|- ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ ( A ` X ) = 1o ) /\ -. A ( x e. dom ( A |` suc X ) <-> x e. suc X ) ) |
| 39 |
|
vex |
|- x e. _V |
| 40 |
39
|
elsuc |
|- ( x e. suc X <-> ( x e. X \/ x = X ) ) |
| 41 |
|
simpl2l |
|- ( ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ ( A ` X ) = 1o ) /\ -. A ( A |` X ) = ( B |` X ) ) |
| 42 |
41
|
fveq1d |
|- ( ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ ( A ` X ) = 1o ) /\ -. A ( ( A |` X ) ` x ) = ( ( B |` X ) ` x ) ) |
| 43 |
|
simpr |
|- ( ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ ( A ` X ) = 1o ) /\ -. A x e. X ) |
| 44 |
43
|
fvresd |
|- ( ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ ( A ` X ) = 1o ) /\ -. A ( ( A |` X ) ` x ) = ( A ` x ) ) |
| 45 |
43
|
fvresd |
|- ( ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ ( A ` X ) = 1o ) /\ -. A ( ( B |` X ) ` x ) = ( B ` x ) ) |
| 46 |
42 44 45
|
3eqtr3d |
|- ( ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ ( A ` X ) = 1o ) /\ -. A ( A ` x ) = ( B ` x ) ) |
| 47 |
46
|
ex |
|- ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ ( A ` X ) = 1o ) /\ -. A ( x e. X -> ( A ` x ) = ( B ` x ) ) ) |
| 48 |
|
simp2r |
|- ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ ( A ` X ) = 1o ) /\ -. A ( A ` X ) = 1o ) |
| 49 |
48 24
|
eqtr4d |
|- ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ ( A ` X ) = 1o ) /\ -. A ( A ` X ) = ( B ` X ) ) |
| 50 |
|
fveq2 |
|- ( x = X -> ( A ` x ) = ( A ` X ) ) |
| 51 |
|
fveq2 |
|- ( x = X -> ( B ` x ) = ( B ` X ) ) |
| 52 |
50 51
|
eqeq12d |
|- ( x = X -> ( ( A ` x ) = ( B ` x ) <-> ( A ` X ) = ( B ` X ) ) ) |
| 53 |
49 52
|
syl5ibrcom |
|- ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ ( A ` X ) = 1o ) /\ -. A ( x = X -> ( A ` x ) = ( B ` x ) ) ) |
| 54 |
47 53
|
jaod |
|- ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ ( A ` X ) = 1o ) /\ -. A ( ( x e. X \/ x = X ) -> ( A ` x ) = ( B ` x ) ) ) |
| 55 |
40 54
|
biimtrid |
|- ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ ( A ` X ) = 1o ) /\ -. A ( x e. suc X -> ( A ` x ) = ( B ` x ) ) ) |
| 56 |
55
|
imp |
|- ( ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ ( A ` X ) = 1o ) /\ -. A ( A ` x ) = ( B ` x ) ) |
| 57 |
|
simpr |
|- ( ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ ( A ` X ) = 1o ) /\ -. A x e. suc X ) |
| 58 |
57
|
fvresd |
|- ( ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ ( A ` X ) = 1o ) /\ -. A ( ( A |` suc X ) ` x ) = ( A ` x ) ) |
| 59 |
57
|
fvresd |
|- ( ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ ( A ` X ) = 1o ) /\ -. A ( ( B |` suc X ) ` x ) = ( B ` x ) ) |
| 60 |
56 58 59
|
3eqtr4d |
|- ( ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ ( A ` X ) = 1o ) /\ -. A ( ( A |` suc X ) ` x ) = ( ( B |` suc X ) ` x ) ) |
| 61 |
60
|
ex |
|- ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ ( A ` X ) = 1o ) /\ -. A ( x e. suc X -> ( ( A |` suc X ) ` x ) = ( ( B |` suc X ) ` x ) ) ) |
| 62 |
38 61
|
sylbid |
|- ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ ( A ` X ) = 1o ) /\ -. A ( x e. dom ( A |` suc X ) -> ( ( A |` suc X ) ` x ) = ( ( B |` suc X ) ` x ) ) ) |
| 63 |
62
|
ralrimiv |
|- ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ ( A ` X ) = 1o ) /\ -. A A. x e. dom ( A |` suc X ) ( ( A |` suc X ) ` x ) = ( ( B |` suc X ) ` x ) ) |
| 64 |
|
nofun |
|- ( A e. No -> Fun A ) |
| 65 |
2 64
|
syl |
|- ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ ( A ` X ) = 1o ) /\ -. A Fun A ) |
| 66 |
65
|
funresd |
|- ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ ( A ` X ) = 1o ) /\ -. A Fun ( A |` suc X ) ) |
| 67 |
|
nofun |
|- ( B e. No -> Fun B ) |
| 68 |
21 67
|
syl |
|- ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ ( A ` X ) = 1o ) /\ -. A Fun B ) |
| 69 |
68
|
funresd |
|- ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ ( A ` X ) = 1o ) /\ -. A Fun ( B |` suc X ) ) |
| 70 |
|
eqfunfv |
|- ( ( Fun ( A |` suc X ) /\ Fun ( B |` suc X ) ) -> ( ( A |` suc X ) = ( B |` suc X ) <-> ( dom ( A |` suc X ) = dom ( B |` suc X ) /\ A. x e. dom ( A |` suc X ) ( ( A |` suc X ) ` x ) = ( ( B |` suc X ) ` x ) ) ) ) |
| 71 |
66 69 70
|
syl2anc |
|- ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ ( A ` X ) = 1o ) /\ -. A ( ( A |` suc X ) = ( B |` suc X ) <-> ( dom ( A |` suc X ) = dom ( B |` suc X ) /\ A. x e. dom ( A |` suc X ) ( ( A |` suc X ) ` x ) = ( ( B |` suc X ) ` x ) ) ) ) |
| 72 |
37 63 71
|
mpbir2and |
|- ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ ( A ` X ) = 1o ) /\ -. A ( A |` suc X ) = ( B |` suc X ) ) |