| Step | Hyp | Ref | Expression | 
						
							| 1 |  | omex |  |-  _om e. _V | 
						
							| 2 | 1 | mptex |  |-  ( w e. _om |-> ( F ` w ) ) e. _V | 
						
							| 3 | 2 | rnex |  |-  ran ( w e. _om |-> ( F ` w ) ) e. _V | 
						
							| 4 |  | zfregfr |  |-  _E Fr ran ( w e. _om |-> ( F ` w ) ) | 
						
							| 5 |  | ssid |  |-  ran ( w e. _om |-> ( F ` w ) ) C_ ran ( w e. _om |-> ( F ` w ) ) | 
						
							| 6 |  | dmmptg |  |-  ( A. w e. _om ( F ` w ) e. _V -> dom ( w e. _om |-> ( F ` w ) ) = _om ) | 
						
							| 7 |  | fvexd |  |-  ( w e. _om -> ( F ` w ) e. _V ) | 
						
							| 8 | 6 7 | mprg |  |-  dom ( w e. _om |-> ( F ` w ) ) = _om | 
						
							| 9 |  | peano1 |  |-  (/) e. _om | 
						
							| 10 | 9 | ne0ii |  |-  _om =/= (/) | 
						
							| 11 | 8 10 | eqnetri |  |-  dom ( w e. _om |-> ( F ` w ) ) =/= (/) | 
						
							| 12 |  | dm0rn0 |  |-  ( dom ( w e. _om |-> ( F ` w ) ) = (/) <-> ran ( w e. _om |-> ( F ` w ) ) = (/) ) | 
						
							| 13 | 12 | necon3bii |  |-  ( dom ( w e. _om |-> ( F ` w ) ) =/= (/) <-> ran ( w e. _om |-> ( F ` w ) ) =/= (/) ) | 
						
							| 14 | 11 13 | mpbi |  |-  ran ( w e. _om |-> ( F ` w ) ) =/= (/) | 
						
							| 15 |  | fri |  |-  ( ( ( ran ( w e. _om |-> ( F ` w ) ) e. _V /\ _E Fr ran ( w e. _om |-> ( F ` w ) ) ) /\ ( ran ( w e. _om |-> ( F ` w ) ) C_ ran ( w e. _om |-> ( F ` w ) ) /\ ran ( w e. _om |-> ( F ` w ) ) =/= (/) ) ) -> E. y e. ran ( w e. _om |-> ( F ` w ) ) A. z e. ran ( w e. _om |-> ( F ` w ) ) -. z _E y ) | 
						
							| 16 | 3 4 5 14 15 | mp4an |  |-  E. y e. ran ( w e. _om |-> ( F ` w ) ) A. z e. ran ( w e. _om |-> ( F ` w ) ) -. z _E y | 
						
							| 17 |  | fvex |  |-  ( F ` w ) e. _V | 
						
							| 18 |  | eqid |  |-  ( w e. _om |-> ( F ` w ) ) = ( w e. _om |-> ( F ` w ) ) | 
						
							| 19 | 17 18 | fnmpti |  |-  ( w e. _om |-> ( F ` w ) ) Fn _om | 
						
							| 20 |  | fvelrnb |  |-  ( ( w e. _om |-> ( F ` w ) ) Fn _om -> ( y e. ran ( w e. _om |-> ( F ` w ) ) <-> E. x e. _om ( ( w e. _om |-> ( F ` w ) ) ` x ) = y ) ) | 
						
							| 21 | 19 20 | ax-mp |  |-  ( y e. ran ( w e. _om |-> ( F ` w ) ) <-> E. x e. _om ( ( w e. _om |-> ( F ` w ) ) ` x ) = y ) | 
						
							| 22 |  | peano2 |  |-  ( x e. _om -> suc x e. _om ) | 
						
							| 23 |  | fveq2 |  |-  ( w = suc x -> ( F ` w ) = ( F ` suc x ) ) | 
						
							| 24 |  | fvex |  |-  ( F ` suc x ) e. _V | 
						
							| 25 | 23 18 24 | fvmpt |  |-  ( suc x e. _om -> ( ( w e. _om |-> ( F ` w ) ) ` suc x ) = ( F ` suc x ) ) | 
						
							| 26 | 22 25 | syl |  |-  ( x e. _om -> ( ( w e. _om |-> ( F ` w ) ) ` suc x ) = ( F ` suc x ) ) | 
						
							| 27 |  | fnfvelrn |  |-  ( ( ( w e. _om |-> ( F ` w ) ) Fn _om /\ suc x e. _om ) -> ( ( w e. _om |-> ( F ` w ) ) ` suc x ) e. ran ( w e. _om |-> ( F ` w ) ) ) | 
						
							| 28 | 19 22 27 | sylancr |  |-  ( x e. _om -> ( ( w e. _om |-> ( F ` w ) ) ` suc x ) e. ran ( w e. _om |-> ( F ` w ) ) ) | 
						
							| 29 | 26 28 | eqeltrrd |  |-  ( x e. _om -> ( F ` suc x ) e. ran ( w e. _om |-> ( F ` w ) ) ) | 
						
							| 30 |  | epel |  |-  ( z _E y <-> z e. y ) | 
						
							| 31 |  | eleq1 |  |-  ( z = ( F ` suc x ) -> ( z e. y <-> ( F ` suc x ) e. y ) ) | 
						
							| 32 | 30 31 | bitrid |  |-  ( z = ( F ` suc x ) -> ( z _E y <-> ( F ` suc x ) e. y ) ) | 
						
							| 33 | 32 | notbid |  |-  ( z = ( F ` suc x ) -> ( -. z _E y <-> -. ( F ` suc x ) e. y ) ) | 
						
							| 34 |  | df-nel |  |-  ( ( F ` suc x ) e/ y <-> -. ( F ` suc x ) e. y ) | 
						
							| 35 | 33 34 | bitr4di |  |-  ( z = ( F ` suc x ) -> ( -. z _E y <-> ( F ` suc x ) e/ y ) ) | 
						
							| 36 | 35 | rspccv |  |-  ( A. z e. ran ( w e. _om |-> ( F ` w ) ) -. z _E y -> ( ( F ` suc x ) e. ran ( w e. _om |-> ( F ` w ) ) -> ( F ` suc x ) e/ y ) ) | 
						
							| 37 | 29 36 | syl5com |  |-  ( x e. _om -> ( A. z e. ran ( w e. _om |-> ( F ` w ) ) -. z _E y -> ( F ` suc x ) e/ y ) ) | 
						
							| 38 |  | fveq2 |  |-  ( w = x -> ( F ` w ) = ( F ` x ) ) | 
						
							| 39 |  | fvex |  |-  ( F ` x ) e. _V | 
						
							| 40 | 38 18 39 | fvmpt |  |-  ( x e. _om -> ( ( w e. _om |-> ( F ` w ) ) ` x ) = ( F ` x ) ) | 
						
							| 41 |  | eqeq1 |  |-  ( ( ( w e. _om |-> ( F ` w ) ) ` x ) = y -> ( ( ( w e. _om |-> ( F ` w ) ) ` x ) = ( F ` x ) <-> y = ( F ` x ) ) ) | 
						
							| 42 | 40 41 | syl5ibcom |  |-  ( x e. _om -> ( ( ( w e. _om |-> ( F ` w ) ) ` x ) = y -> y = ( F ` x ) ) ) | 
						
							| 43 |  | neleq2 |  |-  ( y = ( F ` x ) -> ( ( F ` suc x ) e/ y <-> ( F ` suc x ) e/ ( F ` x ) ) ) | 
						
							| 44 | 43 | biimpd |  |-  ( y = ( F ` x ) -> ( ( F ` suc x ) e/ y -> ( F ` suc x ) e/ ( F ` x ) ) ) | 
						
							| 45 | 42 44 | syl6 |  |-  ( x e. _om -> ( ( ( w e. _om |-> ( F ` w ) ) ` x ) = y -> ( ( F ` suc x ) e/ y -> ( F ` suc x ) e/ ( F ` x ) ) ) ) | 
						
							| 46 | 45 | com23 |  |-  ( x e. _om -> ( ( F ` suc x ) e/ y -> ( ( ( w e. _om |-> ( F ` w ) ) ` x ) = y -> ( F ` suc x ) e/ ( F ` x ) ) ) ) | 
						
							| 47 | 37 46 | syldc |  |-  ( A. z e. ran ( w e. _om |-> ( F ` w ) ) -. z _E y -> ( x e. _om -> ( ( ( w e. _om |-> ( F ` w ) ) ` x ) = y -> ( F ` suc x ) e/ ( F ` x ) ) ) ) | 
						
							| 48 | 47 | reximdvai |  |-  ( A. z e. ran ( w e. _om |-> ( F ` w ) ) -. z _E y -> ( E. x e. _om ( ( w e. _om |-> ( F ` w ) ) ` x ) = y -> E. x e. _om ( F ` suc x ) e/ ( F ` x ) ) ) | 
						
							| 49 | 21 48 | biimtrid |  |-  ( A. z e. ran ( w e. _om |-> ( F ` w ) ) -. z _E y -> ( y e. ran ( w e. _om |-> ( F ` w ) ) -> E. x e. _om ( F ` suc x ) e/ ( F ` x ) ) ) | 
						
							| 50 | 49 | com12 |  |-  ( y e. ran ( w e. _om |-> ( F ` w ) ) -> ( A. z e. ran ( w e. _om |-> ( F ` w ) ) -. z _E y -> E. x e. _om ( F ` suc x ) e/ ( F ` x ) ) ) | 
						
							| 51 | 50 | rexlimiv |  |-  ( E. y e. ran ( w e. _om |-> ( F ` w ) ) A. z e. ran ( w e. _om |-> ( F ` w ) ) -. z _E y -> E. x e. _om ( F ` suc x ) e/ ( F ` x ) ) | 
						
							| 52 | 16 51 | ax-mp |  |-  E. x e. _om ( F ` suc x ) e/ ( F ` x ) |