Step |
Hyp |
Ref |
Expression |
1 |
|
omex |
|- _om e. _V |
2 |
1
|
mptex |
|- ( w e. _om |-> ( F ` w ) ) e. _V |
3 |
2
|
rnex |
|- ran ( w e. _om |-> ( F ` w ) ) e. _V |
4 |
|
zfregfr |
|- _E Fr ran ( w e. _om |-> ( F ` w ) ) |
5 |
|
ssid |
|- ran ( w e. _om |-> ( F ` w ) ) C_ ran ( w e. _om |-> ( F ` w ) ) |
6 |
|
dmmptg |
|- ( A. w e. _om ( F ` w ) e. _V -> dom ( w e. _om |-> ( F ` w ) ) = _om ) |
7 |
|
fvexd |
|- ( w e. _om -> ( F ` w ) e. _V ) |
8 |
6 7
|
mprg |
|- dom ( w e. _om |-> ( F ` w ) ) = _om |
9 |
|
peano1 |
|- (/) e. _om |
10 |
9
|
ne0ii |
|- _om =/= (/) |
11 |
8 10
|
eqnetri |
|- dom ( w e. _om |-> ( F ` w ) ) =/= (/) |
12 |
|
dm0rn0 |
|- ( dom ( w e. _om |-> ( F ` w ) ) = (/) <-> ran ( w e. _om |-> ( F ` w ) ) = (/) ) |
13 |
12
|
necon3bii |
|- ( dom ( w e. _om |-> ( F ` w ) ) =/= (/) <-> ran ( w e. _om |-> ( F ` w ) ) =/= (/) ) |
14 |
11 13
|
mpbi |
|- ran ( w e. _om |-> ( F ` w ) ) =/= (/) |
15 |
|
fri |
|- ( ( ( ran ( w e. _om |-> ( F ` w ) ) e. _V /\ _E Fr ran ( w e. _om |-> ( F ` w ) ) ) /\ ( ran ( w e. _om |-> ( F ` w ) ) C_ ran ( w e. _om |-> ( F ` w ) ) /\ ran ( w e. _om |-> ( F ` w ) ) =/= (/) ) ) -> E. y e. ran ( w e. _om |-> ( F ` w ) ) A. z e. ran ( w e. _om |-> ( F ` w ) ) -. z _E y ) |
16 |
3 4 5 14 15
|
mp4an |
|- E. y e. ran ( w e. _om |-> ( F ` w ) ) A. z e. ran ( w e. _om |-> ( F ` w ) ) -. z _E y |
17 |
|
fvex |
|- ( F ` w ) e. _V |
18 |
|
eqid |
|- ( w e. _om |-> ( F ` w ) ) = ( w e. _om |-> ( F ` w ) ) |
19 |
17 18
|
fnmpti |
|- ( w e. _om |-> ( F ` w ) ) Fn _om |
20 |
|
fvelrnb |
|- ( ( w e. _om |-> ( F ` w ) ) Fn _om -> ( y e. ran ( w e. _om |-> ( F ` w ) ) <-> E. x e. _om ( ( w e. _om |-> ( F ` w ) ) ` x ) = y ) ) |
21 |
19 20
|
ax-mp |
|- ( y e. ran ( w e. _om |-> ( F ` w ) ) <-> E. x e. _om ( ( w e. _om |-> ( F ` w ) ) ` x ) = y ) |
22 |
|
peano2 |
|- ( x e. _om -> suc x e. _om ) |
23 |
|
fveq2 |
|- ( w = suc x -> ( F ` w ) = ( F ` suc x ) ) |
24 |
|
fvex |
|- ( F ` suc x ) e. _V |
25 |
23 18 24
|
fvmpt |
|- ( suc x e. _om -> ( ( w e. _om |-> ( F ` w ) ) ` suc x ) = ( F ` suc x ) ) |
26 |
22 25
|
syl |
|- ( x e. _om -> ( ( w e. _om |-> ( F ` w ) ) ` suc x ) = ( F ` suc x ) ) |
27 |
|
fnfvelrn |
|- ( ( ( w e. _om |-> ( F ` w ) ) Fn _om /\ suc x e. _om ) -> ( ( w e. _om |-> ( F ` w ) ) ` suc x ) e. ran ( w e. _om |-> ( F ` w ) ) ) |
28 |
19 22 27
|
sylancr |
|- ( x e. _om -> ( ( w e. _om |-> ( F ` w ) ) ` suc x ) e. ran ( w e. _om |-> ( F ` w ) ) ) |
29 |
26 28
|
eqeltrrd |
|- ( x e. _om -> ( F ` suc x ) e. ran ( w e. _om |-> ( F ` w ) ) ) |
30 |
|
epel |
|- ( z _E y <-> z e. y ) |
31 |
|
eleq1 |
|- ( z = ( F ` suc x ) -> ( z e. y <-> ( F ` suc x ) e. y ) ) |
32 |
30 31
|
syl5bb |
|- ( z = ( F ` suc x ) -> ( z _E y <-> ( F ` suc x ) e. y ) ) |
33 |
32
|
notbid |
|- ( z = ( F ` suc x ) -> ( -. z _E y <-> -. ( F ` suc x ) e. y ) ) |
34 |
|
df-nel |
|- ( ( F ` suc x ) e/ y <-> -. ( F ` suc x ) e. y ) |
35 |
33 34
|
bitr4di |
|- ( z = ( F ` suc x ) -> ( -. z _E y <-> ( F ` suc x ) e/ y ) ) |
36 |
35
|
rspccv |
|- ( A. z e. ran ( w e. _om |-> ( F ` w ) ) -. z _E y -> ( ( F ` suc x ) e. ran ( w e. _om |-> ( F ` w ) ) -> ( F ` suc x ) e/ y ) ) |
37 |
29 36
|
syl5com |
|- ( x e. _om -> ( A. z e. ran ( w e. _om |-> ( F ` w ) ) -. z _E y -> ( F ` suc x ) e/ y ) ) |
38 |
|
fveq2 |
|- ( w = x -> ( F ` w ) = ( F ` x ) ) |
39 |
|
fvex |
|- ( F ` x ) e. _V |
40 |
38 18 39
|
fvmpt |
|- ( x e. _om -> ( ( w e. _om |-> ( F ` w ) ) ` x ) = ( F ` x ) ) |
41 |
|
eqeq1 |
|- ( ( ( w e. _om |-> ( F ` w ) ) ` x ) = y -> ( ( ( w e. _om |-> ( F ` w ) ) ` x ) = ( F ` x ) <-> y = ( F ` x ) ) ) |
42 |
40 41
|
syl5ibcom |
|- ( x e. _om -> ( ( ( w e. _om |-> ( F ` w ) ) ` x ) = y -> y = ( F ` x ) ) ) |
43 |
|
neleq2 |
|- ( y = ( F ` x ) -> ( ( F ` suc x ) e/ y <-> ( F ` suc x ) e/ ( F ` x ) ) ) |
44 |
43
|
biimpd |
|- ( y = ( F ` x ) -> ( ( F ` suc x ) e/ y -> ( F ` suc x ) e/ ( F ` x ) ) ) |
45 |
42 44
|
syl6 |
|- ( x e. _om -> ( ( ( w e. _om |-> ( F ` w ) ) ` x ) = y -> ( ( F ` suc x ) e/ y -> ( F ` suc x ) e/ ( F ` x ) ) ) ) |
46 |
45
|
com23 |
|- ( x e. _om -> ( ( F ` suc x ) e/ y -> ( ( ( w e. _om |-> ( F ` w ) ) ` x ) = y -> ( F ` suc x ) e/ ( F ` x ) ) ) ) |
47 |
37 46
|
syldc |
|- ( A. z e. ran ( w e. _om |-> ( F ` w ) ) -. z _E y -> ( x e. _om -> ( ( ( w e. _om |-> ( F ` w ) ) ` x ) = y -> ( F ` suc x ) e/ ( F ` x ) ) ) ) |
48 |
47
|
reximdvai |
|- ( A. z e. ran ( w e. _om |-> ( F ` w ) ) -. z _E y -> ( E. x e. _om ( ( w e. _om |-> ( F ` w ) ) ` x ) = y -> E. x e. _om ( F ` suc x ) e/ ( F ` x ) ) ) |
49 |
21 48
|
syl5bi |
|- ( A. z e. ran ( w e. _om |-> ( F ` w ) ) -. z _E y -> ( y e. ran ( w e. _om |-> ( F ` w ) ) -> E. x e. _om ( F ` suc x ) e/ ( F ` x ) ) ) |
50 |
49
|
com12 |
|- ( y e. ran ( w e. _om |-> ( F ` w ) ) -> ( A. z e. ran ( w e. _om |-> ( F ` w ) ) -. z _E y -> E. x e. _om ( F ` suc x ) e/ ( F ` x ) ) ) |
51 |
50
|
rexlimiv |
|- ( E. y e. ran ( w e. _om |-> ( F ` w ) ) A. z e. ran ( w e. _om |-> ( F ` w ) ) -. z _E y -> E. x e. _om ( F ` suc x ) e/ ( F ` x ) ) |
52 |
16 51
|
ax-mp |
|- E. x e. _om ( F ` suc x ) e/ ( F ` x ) |