| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp11 |
|- ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ A A e. No ) |
| 2 |
|
sltso |
|- |
| 3 |
|
sonr |
|- ( ( -. A |
| 4 |
2 3
|
mpan |
|- ( A e. No -> -. A |
| 5 |
1 4
|
syl |
|- ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ A -. A |
| 6 |
|
simp2r |
|- ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ A A |
| 7 |
|
breq2 |
|- ( A = B -> ( A A |
| 8 |
6 7
|
syl5ibrcom |
|- ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ A ( A = B -> A |
| 9 |
5 8
|
mtod |
|- ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ A -. A = B ) |
| 10 |
|
simpl2l |
|- ( ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ A ( A |` X ) = ( B |` X ) ) |
| 11 |
|
simpl11 |
|- ( ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ A A e. No ) |
| 12 |
|
nofun |
|- ( A e. No -> Fun A ) |
| 13 |
|
funrel |
|- ( Fun A -> Rel A ) |
| 14 |
11 12 13
|
3syl |
|- ( ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ A Rel A ) |
| 15 |
|
simpl13 |
|- ( ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ A X e. On ) |
| 16 |
|
simpl3 |
|- ( ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ A ( A ` X ) = (/) ) |
| 17 |
|
nolt02olem |
|- ( ( A e. No /\ X e. On /\ ( A ` X ) = (/) ) -> dom A C_ X ) |
| 18 |
11 15 16 17
|
syl3anc |
|- ( ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ A dom A C_ X ) |
| 19 |
|
relssres |
|- ( ( Rel A /\ dom A C_ X ) -> ( A |` X ) = A ) |
| 20 |
14 18 19
|
syl2anc |
|- ( ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ A ( A |` X ) = A ) |
| 21 |
|
simpl12 |
|- ( ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ A B e. No ) |
| 22 |
|
nofun |
|- ( B e. No -> Fun B ) |
| 23 |
|
funrel |
|- ( Fun B -> Rel B ) |
| 24 |
21 22 23
|
3syl |
|- ( ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ A Rel B ) |
| 25 |
|
simpr |
|- ( ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ A ( B ` X ) = (/) ) |
| 26 |
|
nolt02olem |
|- ( ( B e. No /\ X e. On /\ ( B ` X ) = (/) ) -> dom B C_ X ) |
| 27 |
21 15 25 26
|
syl3anc |
|- ( ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ A dom B C_ X ) |
| 28 |
|
relssres |
|- ( ( Rel B /\ dom B C_ X ) -> ( B |` X ) = B ) |
| 29 |
24 27 28
|
syl2anc |
|- ( ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ A ( B |` X ) = B ) |
| 30 |
10 20 29
|
3eqtr3d |
|- ( ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ A A = B ) |
| 31 |
9 30
|
mtand |
|- ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ A -. ( B ` X ) = (/) ) |
| 32 |
|
simp12 |
|- ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ A B e. No ) |
| 33 |
|
sltval |
|- ( ( A e. No /\ B e. No ) -> ( A E. x e. On ( A. y e. x ( A ` y ) = ( B ` y ) /\ ( A ` x ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` x ) ) ) ) |
| 34 |
1 32 33
|
syl2anc |
|- ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ A ( A E. x e. On ( A. y e. x ( A ` y ) = ( B ` y ) /\ ( A ` x ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` x ) ) ) ) |
| 35 |
6 34
|
mpbid |
|- ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ A E. x e. On ( A. y e. x ( A ` y ) = ( B ` y ) /\ ( A ` x ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` x ) ) ) |
| 36 |
|
df-an |
|- ( ( A. y e. x ( A ` y ) = ( B ` y ) /\ ( A ` x ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` x ) ) <-> -. ( A. y e. x ( A ` y ) = ( B ` y ) -> -. ( A ` x ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` x ) ) ) |
| 37 |
36
|
rexbii |
|- ( E. x e. On ( A. y e. x ( A ` y ) = ( B ` y ) /\ ( A ` x ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` x ) ) <-> E. x e. On -. ( A. y e. x ( A ` y ) = ( B ` y ) -> -. ( A ` x ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` x ) ) ) |
| 38 |
|
rexnal |
|- ( E. x e. On -. ( A. y e. x ( A ` y ) = ( B ` y ) -> -. ( A ` x ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` x ) ) <-> -. A. x e. On ( A. y e. x ( A ` y ) = ( B ` y ) -> -. ( A ` x ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` x ) ) ) |
| 39 |
37 38
|
bitri |
|- ( E. x e. On ( A. y e. x ( A ` y ) = ( B ` y ) /\ ( A ` x ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` x ) ) <-> -. A. x e. On ( A. y e. x ( A ` y ) = ( B ` y ) -> -. ( A ` x ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` x ) ) ) |
| 40 |
35 39
|
sylib |
|- ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ A -. A. x e. On ( A. y e. x ( A ` y ) = ( B ` y ) -> -. ( A ` x ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` x ) ) ) |
| 41 |
|
1oex |
|- 1o e. _V |
| 42 |
41
|
prid1 |
|- 1o e. { 1o , 2o } |
| 43 |
42
|
nosgnn0i |
|- (/) =/= 1o |
| 44 |
43
|
neii |
|- -. (/) = 1o |
| 45 |
|
simpll3 |
|- ( ( ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ A ( A ` X ) = (/) ) |
| 46 |
|
simplr |
|- ( ( ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ A ( B ` X ) = 1o ) |
| 47 |
|
eqeq1 |
|- ( ( A ` X ) = ( B ` X ) -> ( ( A ` X ) = (/) <-> ( B ` X ) = (/) ) ) |
| 48 |
47
|
anbi1d |
|- ( ( A ` X ) = ( B ` X ) -> ( ( ( A ` X ) = (/) /\ ( B ` X ) = 1o ) <-> ( ( B ` X ) = (/) /\ ( B ` X ) = 1o ) ) ) |
| 49 |
|
eqtr2 |
|- ( ( ( B ` X ) = (/) /\ ( B ` X ) = 1o ) -> (/) = 1o ) |
| 50 |
48 49
|
biimtrdi |
|- ( ( A ` X ) = ( B ` X ) -> ( ( ( A ` X ) = (/) /\ ( B ` X ) = 1o ) -> (/) = 1o ) ) |
| 51 |
50
|
com12 |
|- ( ( ( A ` X ) = (/) /\ ( B ` X ) = 1o ) -> ( ( A ` X ) = ( B ` X ) -> (/) = 1o ) ) |
| 52 |
45 46 51
|
syl2anc |
|- ( ( ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ A ( ( A ` X ) = ( B ` X ) -> (/) = 1o ) ) |
| 53 |
44 52
|
mtoi |
|- ( ( ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ A -. ( A ` X ) = ( B ` X ) ) |
| 54 |
|
simpr |
|- ( ( ( ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ A X e. x ) |
| 55 |
|
simplrr |
|- ( ( ( ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ A A. y e. x ( A ` y ) = ( B ` y ) ) |
| 56 |
|
fveq2 |
|- ( y = X -> ( A ` y ) = ( A ` X ) ) |
| 57 |
|
fveq2 |
|- ( y = X -> ( B ` y ) = ( B ` X ) ) |
| 58 |
56 57
|
eqeq12d |
|- ( y = X -> ( ( A ` y ) = ( B ` y ) <-> ( A ` X ) = ( B ` X ) ) ) |
| 59 |
58
|
rspcv |
|- ( X e. x -> ( A. y e. x ( A ` y ) = ( B ` y ) -> ( A ` X ) = ( B ` X ) ) ) |
| 60 |
54 55 59
|
sylc |
|- ( ( ( ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ A ( A ` X ) = ( B ` X ) ) |
| 61 |
53 60
|
mtand |
|- ( ( ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ A -. X e. x ) |
| 62 |
|
simprl |
|- ( ( ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ A x e. On ) |
| 63 |
|
simpl13 |
|- ( ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ A X e. On ) |
| 64 |
63
|
adantr |
|- ( ( ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ A X e. On ) |
| 65 |
|
ontri1 |
|- ( ( x e. On /\ X e. On ) -> ( x C_ X <-> -. X e. x ) ) |
| 66 |
62 64 65
|
syl2anc |
|- ( ( ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ A ( x C_ X <-> -. X e. x ) ) |
| 67 |
61 66
|
mpbird |
|- ( ( ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ A x C_ X ) |
| 68 |
|
onsseleq |
|- ( ( x e. On /\ X e. On ) -> ( x C_ X <-> ( x e. X \/ x = X ) ) ) |
| 69 |
62 64 68
|
syl2anc |
|- ( ( ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ A ( x C_ X <-> ( x e. X \/ x = X ) ) ) |
| 70 |
|
eqtr2 |
|- ( ( ( ( A |` X ) ` x ) = (/) /\ ( ( A |` X ) ` x ) = 1o ) -> (/) = 1o ) |
| 71 |
70
|
ancoms |
|- ( ( ( ( A |` X ) ` x ) = 1o /\ ( ( A |` X ) ` x ) = (/) ) -> (/) = 1o ) |
| 72 |
44 71
|
mto |
|- -. ( ( ( A |` X ) ` x ) = 1o /\ ( ( A |` X ) ` x ) = (/) ) |
| 73 |
|
df-1o |
|- 1o = suc (/) |
| 74 |
|
df-2o |
|- 2o = suc 1o |
| 75 |
73 74
|
eqeq12i |
|- ( 1o = 2o <-> suc (/) = suc 1o ) |
| 76 |
|
0elon |
|- (/) e. On |
| 77 |
|
1on |
|- 1o e. On |
| 78 |
|
suc11 |
|- ( ( (/) e. On /\ 1o e. On ) -> ( suc (/) = suc 1o <-> (/) = 1o ) ) |
| 79 |
76 77 78
|
mp2an |
|- ( suc (/) = suc 1o <-> (/) = 1o ) |
| 80 |
75 79
|
bitri |
|- ( 1o = 2o <-> (/) = 1o ) |
| 81 |
43 80
|
nemtbir |
|- -. 1o = 2o |
| 82 |
|
eqtr2 |
|- ( ( ( ( A |` X ) ` x ) = 1o /\ ( ( A |` X ) ` x ) = 2o ) -> 1o = 2o ) |
| 83 |
81 82
|
mto |
|- -. ( ( ( A |` X ) ` x ) = 1o /\ ( ( A |` X ) ` x ) = 2o ) |
| 84 |
|
2on |
|- 2o e. On |
| 85 |
84
|
elexi |
|- 2o e. _V |
| 86 |
85
|
prid2 |
|- 2o e. { 1o , 2o } |
| 87 |
86
|
nosgnn0i |
|- (/) =/= 2o |
| 88 |
87
|
neii |
|- -. (/) = 2o |
| 89 |
|
eqtr2 |
|- ( ( ( ( A |` X ) ` x ) = (/) /\ ( ( A |` X ) ` x ) = 2o ) -> (/) = 2o ) |
| 90 |
88 89
|
mto |
|- -. ( ( ( A |` X ) ` x ) = (/) /\ ( ( A |` X ) ` x ) = 2o ) |
| 91 |
72 83 90
|
3pm3.2i |
|- ( -. ( ( ( A |` X ) ` x ) = 1o /\ ( ( A |` X ) ` x ) = (/) ) /\ -. ( ( ( A |` X ) ` x ) = 1o /\ ( ( A |` X ) ` x ) = 2o ) /\ -. ( ( ( A |` X ) ` x ) = (/) /\ ( ( A |` X ) ` x ) = 2o ) ) |
| 92 |
|
fvex |
|- ( ( A |` X ) ` x ) e. _V |
| 93 |
92 92
|
brtp |
|- ( ( ( A |` X ) ` x ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( ( A |` X ) ` x ) <-> ( ( ( ( A |` X ) ` x ) = 1o /\ ( ( A |` X ) ` x ) = (/) ) \/ ( ( ( A |` X ) ` x ) = 1o /\ ( ( A |` X ) ` x ) = 2o ) \/ ( ( ( A |` X ) ` x ) = (/) /\ ( ( A |` X ) ` x ) = 2o ) ) ) |
| 94 |
|
3oran |
|- ( ( ( ( ( A |` X ) ` x ) = 1o /\ ( ( A |` X ) ` x ) = (/) ) \/ ( ( ( A |` X ) ` x ) = 1o /\ ( ( A |` X ) ` x ) = 2o ) \/ ( ( ( A |` X ) ` x ) = (/) /\ ( ( A |` X ) ` x ) = 2o ) ) <-> -. ( -. ( ( ( A |` X ) ` x ) = 1o /\ ( ( A |` X ) ` x ) = (/) ) /\ -. ( ( ( A |` X ) ` x ) = 1o /\ ( ( A |` X ) ` x ) = 2o ) /\ -. ( ( ( A |` X ) ` x ) = (/) /\ ( ( A |` X ) ` x ) = 2o ) ) ) |
| 95 |
93 94
|
bitri |
|- ( ( ( A |` X ) ` x ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( ( A |` X ) ` x ) <-> -. ( -. ( ( ( A |` X ) ` x ) = 1o /\ ( ( A |` X ) ` x ) = (/) ) /\ -. ( ( ( A |` X ) ` x ) = 1o /\ ( ( A |` X ) ` x ) = 2o ) /\ -. ( ( ( A |` X ) ` x ) = (/) /\ ( ( A |` X ) ` x ) = 2o ) ) ) |
| 96 |
95
|
con2bii |
|- ( ( -. ( ( ( A |` X ) ` x ) = 1o /\ ( ( A |` X ) ` x ) = (/) ) /\ -. ( ( ( A |` X ) ` x ) = 1o /\ ( ( A |` X ) ` x ) = 2o ) /\ -. ( ( ( A |` X ) ` x ) = (/) /\ ( ( A |` X ) ` x ) = 2o ) ) <-> -. ( ( A |` X ) ` x ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( ( A |` X ) ` x ) ) |
| 97 |
91 96
|
mpbi |
|- -. ( ( A |` X ) ` x ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( ( A |` X ) ` x ) |
| 98 |
|
simpl2l |
|- ( ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ A ( A |` X ) = ( B |` X ) ) |
| 99 |
98
|
adantr |
|- ( ( ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ A ( A |` X ) = ( B |` X ) ) |
| 100 |
99
|
fveq1d |
|- ( ( ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ A ( ( A |` X ) ` x ) = ( ( B |` X ) ` x ) ) |
| 101 |
100
|
breq2d |
|- ( ( ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ A ( ( ( A |` X ) ` x ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( ( A |` X ) ` x ) <-> ( ( A |` X ) ` x ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( ( B |` X ) ` x ) ) ) |
| 102 |
97 101
|
mtbii |
|- ( ( ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ A -. ( ( A |` X ) ` x ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( ( B |` X ) ` x ) ) |
| 103 |
|
fvres |
|- ( x e. X -> ( ( A |` X ) ` x ) = ( A ` x ) ) |
| 104 |
|
fvres |
|- ( x e. X -> ( ( B |` X ) ` x ) = ( B ` x ) ) |
| 105 |
103 104
|
breq12d |
|- ( x e. X -> ( ( ( A |` X ) ` x ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( ( B |` X ) ` x ) <-> ( A ` x ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` x ) ) ) |
| 106 |
105
|
notbid |
|- ( x e. X -> ( -. ( ( A |` X ) ` x ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( ( B |` X ) ` x ) <-> -. ( A ` x ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` x ) ) ) |
| 107 |
102 106
|
syl5ibcom |
|- ( ( ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ A ( x e. X -> -. ( A ` x ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` x ) ) ) |
| 108 |
44
|
intnanr |
|- -. ( (/) = 1o /\ 1o = (/) ) |
| 109 |
44
|
intnanr |
|- -. ( (/) = 1o /\ 1o = 2o ) |
| 110 |
81
|
intnan |
|- -. ( (/) = (/) /\ 1o = 2o ) |
| 111 |
108 109 110
|
3pm3.2i |
|- ( -. ( (/) = 1o /\ 1o = (/) ) /\ -. ( (/) = 1o /\ 1o = 2o ) /\ -. ( (/) = (/) /\ 1o = 2o ) ) |
| 112 |
|
0ex |
|- (/) e. _V |
| 113 |
112 41
|
brtp |
|- ( (/) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } 1o <-> ( ( (/) = 1o /\ 1o = (/) ) \/ ( (/) = 1o /\ 1o = 2o ) \/ ( (/) = (/) /\ 1o = 2o ) ) ) |
| 114 |
|
3oran |
|- ( ( ( (/) = 1o /\ 1o = (/) ) \/ ( (/) = 1o /\ 1o = 2o ) \/ ( (/) = (/) /\ 1o = 2o ) ) <-> -. ( -. ( (/) = 1o /\ 1o = (/) ) /\ -. ( (/) = 1o /\ 1o = 2o ) /\ -. ( (/) = (/) /\ 1o = 2o ) ) ) |
| 115 |
113 114
|
bitri |
|- ( (/) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } 1o <-> -. ( -. ( (/) = 1o /\ 1o = (/) ) /\ -. ( (/) = 1o /\ 1o = 2o ) /\ -. ( (/) = (/) /\ 1o = 2o ) ) ) |
| 116 |
115
|
con2bii |
|- ( ( -. ( (/) = 1o /\ 1o = (/) ) /\ -. ( (/) = 1o /\ 1o = 2o ) /\ -. ( (/) = (/) /\ 1o = 2o ) ) <-> -. (/) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } 1o ) |
| 117 |
111 116
|
mpbi |
|- -. (/) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } 1o |
| 118 |
45 46
|
breq12d |
|- ( ( ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ A ( ( A ` X ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` X ) <-> (/) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } 1o ) ) |
| 119 |
117 118
|
mtbiri |
|- ( ( ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ A -. ( A ` X ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` X ) ) |
| 120 |
|
fveq2 |
|- ( x = X -> ( A ` x ) = ( A ` X ) ) |
| 121 |
|
fveq2 |
|- ( x = X -> ( B ` x ) = ( B ` X ) ) |
| 122 |
120 121
|
breq12d |
|- ( x = X -> ( ( A ` x ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` x ) <-> ( A ` X ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` X ) ) ) |
| 123 |
122
|
notbid |
|- ( x = X -> ( -. ( A ` x ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` x ) <-> -. ( A ` X ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` X ) ) ) |
| 124 |
119 123
|
syl5ibrcom |
|- ( ( ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ A ( x = X -> -. ( A ` x ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` x ) ) ) |
| 125 |
107 124
|
jaod |
|- ( ( ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ A ( ( x e. X \/ x = X ) -> -. ( A ` x ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` x ) ) ) |
| 126 |
69 125
|
sylbid |
|- ( ( ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ A ( x C_ X -> -. ( A ` x ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` x ) ) ) |
| 127 |
67 126
|
mpd |
|- ( ( ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ A -. ( A ` x ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` x ) ) |
| 128 |
127
|
expr |
|- ( ( ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ A ( A. y e. x ( A ` y ) = ( B ` y ) -> -. ( A ` x ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` x ) ) ) |
| 129 |
128
|
ralrimiva |
|- ( ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ A A. x e. On ( A. y e. x ( A ` y ) = ( B ` y ) -> -. ( A ` x ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` x ) ) ) |
| 130 |
40 129
|
mtand |
|- ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ A -. ( B ` X ) = 1o ) |
| 131 |
|
nofv |
|- ( B e. No -> ( ( B ` X ) = (/) \/ ( B ` X ) = 1o \/ ( B ` X ) = 2o ) ) |
| 132 |
32 131
|
syl |
|- ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ A ( ( B ` X ) = (/) \/ ( B ` X ) = 1o \/ ( B ` X ) = 2o ) ) |
| 133 |
|
3orrot |
|- ( ( ( B ` X ) = (/) \/ ( B ` X ) = 1o \/ ( B ` X ) = 2o ) <-> ( ( B ` X ) = 1o \/ ( B ` X ) = 2o \/ ( B ` X ) = (/) ) ) |
| 134 |
|
3orrot |
|- ( ( ( B ` X ) = 1o \/ ( B ` X ) = 2o \/ ( B ` X ) = (/) ) <-> ( ( B ` X ) = 2o \/ ( B ` X ) = (/) \/ ( B ` X ) = 1o ) ) |
| 135 |
133 134
|
bitri |
|- ( ( ( B ` X ) = (/) \/ ( B ` X ) = 1o \/ ( B ` X ) = 2o ) <-> ( ( B ` X ) = 2o \/ ( B ` X ) = (/) \/ ( B ` X ) = 1o ) ) |
| 136 |
132 135
|
sylib |
|- ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ A ( ( B ` X ) = 2o \/ ( B ` X ) = (/) \/ ( B ` X ) = 1o ) ) |
| 137 |
31 130 136
|
ecase23d |
|- ( ( ( A e. No /\ B e. No /\ X e. On ) /\ ( ( A |` X ) = ( B |` X ) /\ A ( B ` X ) = 2o ) |