| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nosgnn0 |
|- -. (/) e. { 1o , 2o } |
| 2 |
1
|
a1i |
|- ( ( A e. No /\ X e. On /\ ( A ` X ) = (/) ) -> -. (/) e. { 1o , 2o } ) |
| 3 |
|
simpl3 |
|- ( ( ( A e. No /\ X e. On /\ ( A ` X ) = (/) ) /\ X e. dom A ) -> ( A ` X ) = (/) ) |
| 4 |
|
simpl1 |
|- ( ( ( A e. No /\ X e. On /\ ( A ` X ) = (/) ) /\ X e. dom A ) -> A e. No ) |
| 5 |
|
norn |
|- ( A e. No -> ran A C_ { 1o , 2o } ) |
| 6 |
4 5
|
syl |
|- ( ( ( A e. No /\ X e. On /\ ( A ` X ) = (/) ) /\ X e. dom A ) -> ran A C_ { 1o , 2o } ) |
| 7 |
|
nofun |
|- ( A e. No -> Fun A ) |
| 8 |
7
|
3ad2ant1 |
|- ( ( A e. No /\ X e. On /\ ( A ` X ) = (/) ) -> Fun A ) |
| 9 |
|
fvelrn |
|- ( ( Fun A /\ X e. dom A ) -> ( A ` X ) e. ran A ) |
| 10 |
8 9
|
sylan |
|- ( ( ( A e. No /\ X e. On /\ ( A ` X ) = (/) ) /\ X e. dom A ) -> ( A ` X ) e. ran A ) |
| 11 |
6 10
|
sseldd |
|- ( ( ( A e. No /\ X e. On /\ ( A ` X ) = (/) ) /\ X e. dom A ) -> ( A ` X ) e. { 1o , 2o } ) |
| 12 |
3 11
|
eqeltrrd |
|- ( ( ( A e. No /\ X e. On /\ ( A ` X ) = (/) ) /\ X e. dom A ) -> (/) e. { 1o , 2o } ) |
| 13 |
2 12
|
mtand |
|- ( ( A e. No /\ X e. On /\ ( A ` X ) = (/) ) -> -. X e. dom A ) |
| 14 |
|
nodmon |
|- ( A e. No -> dom A e. On ) |
| 15 |
14
|
3ad2ant1 |
|- ( ( A e. No /\ X e. On /\ ( A ` X ) = (/) ) -> dom A e. On ) |
| 16 |
|
simp2 |
|- ( ( A e. No /\ X e. On /\ ( A ` X ) = (/) ) -> X e. On ) |
| 17 |
|
ontri1 |
|- ( ( dom A e. On /\ X e. On ) -> ( dom A C_ X <-> -. X e. dom A ) ) |
| 18 |
15 16 17
|
syl2anc |
|- ( ( A e. No /\ X e. On /\ ( A ` X ) = (/) ) -> ( dom A C_ X <-> -. X e. dom A ) ) |
| 19 |
13 18
|
mpbird |
|- ( ( A e. No /\ X e. On /\ ( A ` X ) = (/) ) -> dom A C_ X ) |