| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nonbool.1 |
|- A e. ~H |
| 2 |
|
nonbool.2 |
|- B e. ~H |
| 3 |
|
nonbool.3 |
|- F = ( span ` { A } ) |
| 4 |
|
nonbool.4 |
|- G = ( span ` { B } ) |
| 5 |
|
nonbool.5 |
|- H = ( span ` { ( A +h B ) } ) |
| 6 |
1 2
|
hvaddcli |
|- ( A +h B ) e. ~H |
| 7 |
|
spansnid |
|- ( ( A +h B ) e. ~H -> ( A +h B ) e. ( span ` { ( A +h B ) } ) ) |
| 8 |
6 7
|
ax-mp |
|- ( A +h B ) e. ( span ` { ( A +h B ) } ) |
| 9 |
8 5
|
eleqtrri |
|- ( A +h B ) e. H |
| 10 |
1
|
spansnchi |
|- ( span ` { A } ) e. CH |
| 11 |
10
|
chshii |
|- ( span ` { A } ) e. SH |
| 12 |
3 11
|
eqeltri |
|- F e. SH |
| 13 |
2
|
spansnchi |
|- ( span ` { B } ) e. CH |
| 14 |
13
|
chshii |
|- ( span ` { B } ) e. SH |
| 15 |
4 14
|
eqeltri |
|- G e. SH |
| 16 |
12 15
|
shsleji |
|- ( F +H G ) C_ ( F vH G ) |
| 17 |
|
spansnid |
|- ( A e. ~H -> A e. ( span ` { A } ) ) |
| 18 |
1 17
|
ax-mp |
|- A e. ( span ` { A } ) |
| 19 |
18 3
|
eleqtrri |
|- A e. F |
| 20 |
|
spansnid |
|- ( B e. ~H -> B e. ( span ` { B } ) ) |
| 21 |
2 20
|
ax-mp |
|- B e. ( span ` { B } ) |
| 22 |
21 4
|
eleqtrri |
|- B e. G |
| 23 |
12 15
|
shsvai |
|- ( ( A e. F /\ B e. G ) -> ( A +h B ) e. ( F +H G ) ) |
| 24 |
19 22 23
|
mp2an |
|- ( A +h B ) e. ( F +H G ) |
| 25 |
16 24
|
sselii |
|- ( A +h B ) e. ( F vH G ) |
| 26 |
|
elin |
|- ( ( A +h B ) e. ( H i^i ( F vH G ) ) <-> ( ( A +h B ) e. H /\ ( A +h B ) e. ( F vH G ) ) ) |
| 27 |
9 25 26
|
mpbir2an |
|- ( A +h B ) e. ( H i^i ( F vH G ) ) |
| 28 |
|
eleq2 |
|- ( ( H i^i ( F vH G ) ) = 0H -> ( ( A +h B ) e. ( H i^i ( F vH G ) ) <-> ( A +h B ) e. 0H ) ) |
| 29 |
27 28
|
mpbii |
|- ( ( H i^i ( F vH G ) ) = 0H -> ( A +h B ) e. 0H ) |
| 30 |
|
elch0 |
|- ( ( A +h B ) e. 0H <-> ( A +h B ) = 0h ) |
| 31 |
29 30
|
sylib |
|- ( ( H i^i ( F vH G ) ) = 0H -> ( A +h B ) = 0h ) |
| 32 |
|
ch0 |
|- ( ( span ` { A } ) e. CH -> 0h e. ( span ` { A } ) ) |
| 33 |
10 32
|
ax-mp |
|- 0h e. ( span ` { A } ) |
| 34 |
31 33
|
eqeltrdi |
|- ( ( H i^i ( F vH G ) ) = 0H -> ( A +h B ) e. ( span ` { A } ) ) |
| 35 |
3
|
eleq2i |
|- ( B e. F <-> B e. ( span ` { A } ) ) |
| 36 |
|
sumspansn |
|- ( ( A e. ~H /\ B e. ~H ) -> ( ( A +h B ) e. ( span ` { A } ) <-> B e. ( span ` { A } ) ) ) |
| 37 |
1 2 36
|
mp2an |
|- ( ( A +h B ) e. ( span ` { A } ) <-> B e. ( span ` { A } ) ) |
| 38 |
35 37
|
bitr4i |
|- ( B e. F <-> ( A +h B ) e. ( span ` { A } ) ) |
| 39 |
34 38
|
sylibr |
|- ( ( H i^i ( F vH G ) ) = 0H -> B e. F ) |
| 40 |
39
|
con3i |
|- ( -. B e. F -> -. ( H i^i ( F vH G ) ) = 0H ) |
| 41 |
40
|
adantl |
|- ( ( -. A e. G /\ -. B e. F ) -> -. ( H i^i ( F vH G ) ) = 0H ) |
| 42 |
5 3
|
ineq12i |
|- ( H i^i F ) = ( ( span ` { ( A +h B ) } ) i^i ( span ` { A } ) ) |
| 43 |
6 1
|
spansnm0i |
|- ( -. ( A +h B ) e. ( span ` { A } ) -> ( ( span ` { ( A +h B ) } ) i^i ( span ` { A } ) ) = 0H ) |
| 44 |
38 43
|
sylnbi |
|- ( -. B e. F -> ( ( span ` { ( A +h B ) } ) i^i ( span ` { A } ) ) = 0H ) |
| 45 |
42 44
|
eqtrid |
|- ( -. B e. F -> ( H i^i F ) = 0H ) |
| 46 |
5 4
|
ineq12i |
|- ( H i^i G ) = ( ( span ` { ( A +h B ) } ) i^i ( span ` { B } ) ) |
| 47 |
|
sumspansn |
|- ( ( B e. ~H /\ A e. ~H ) -> ( ( B +h A ) e. ( span ` { B } ) <-> A e. ( span ` { B } ) ) ) |
| 48 |
2 1 47
|
mp2an |
|- ( ( B +h A ) e. ( span ` { B } ) <-> A e. ( span ` { B } ) ) |
| 49 |
1 2
|
hvcomi |
|- ( A +h B ) = ( B +h A ) |
| 50 |
49
|
eleq1i |
|- ( ( A +h B ) e. ( span ` { B } ) <-> ( B +h A ) e. ( span ` { B } ) ) |
| 51 |
4
|
eleq2i |
|- ( A e. G <-> A e. ( span ` { B } ) ) |
| 52 |
48 50 51
|
3bitr4ri |
|- ( A e. G <-> ( A +h B ) e. ( span ` { B } ) ) |
| 53 |
6 2
|
spansnm0i |
|- ( -. ( A +h B ) e. ( span ` { B } ) -> ( ( span ` { ( A +h B ) } ) i^i ( span ` { B } ) ) = 0H ) |
| 54 |
52 53
|
sylnbi |
|- ( -. A e. G -> ( ( span ` { ( A +h B ) } ) i^i ( span ` { B } ) ) = 0H ) |
| 55 |
46 54
|
eqtrid |
|- ( -. A e. G -> ( H i^i G ) = 0H ) |
| 56 |
45 55
|
oveqan12rd |
|- ( ( -. A e. G /\ -. B e. F ) -> ( ( H i^i F ) vH ( H i^i G ) ) = ( 0H vH 0H ) ) |
| 57 |
|
h0elch |
|- 0H e. CH |
| 58 |
57
|
chj0i |
|- ( 0H vH 0H ) = 0H |
| 59 |
56 58
|
eqtrdi |
|- ( ( -. A e. G /\ -. B e. F ) -> ( ( H i^i F ) vH ( H i^i G ) ) = 0H ) |
| 60 |
|
eqeq2 |
|- ( ( ( H i^i F ) vH ( H i^i G ) ) = 0H -> ( ( H i^i ( F vH G ) ) = ( ( H i^i F ) vH ( H i^i G ) ) <-> ( H i^i ( F vH G ) ) = 0H ) ) |
| 61 |
60
|
notbid |
|- ( ( ( H i^i F ) vH ( H i^i G ) ) = 0H -> ( -. ( H i^i ( F vH G ) ) = ( ( H i^i F ) vH ( H i^i G ) ) <-> -. ( H i^i ( F vH G ) ) = 0H ) ) |
| 62 |
61
|
biimparc |
|- ( ( -. ( H i^i ( F vH G ) ) = 0H /\ ( ( H i^i F ) vH ( H i^i G ) ) = 0H ) -> -. ( H i^i ( F vH G ) ) = ( ( H i^i F ) vH ( H i^i G ) ) ) |
| 63 |
41 59 62
|
syl2anc |
|- ( ( -. A e. G /\ -. B e. F ) -> -. ( H i^i ( F vH G ) ) = ( ( H i^i F ) vH ( H i^i G ) ) ) |
| 64 |
|
ioran |
|- ( -. ( A e. G \/ B e. F ) <-> ( -. A e. G /\ -. B e. F ) ) |
| 65 |
|
df-ne |
|- ( ( H i^i ( F vH G ) ) =/= ( ( H i^i F ) vH ( H i^i G ) ) <-> -. ( H i^i ( F vH G ) ) = ( ( H i^i F ) vH ( H i^i G ) ) ) |
| 66 |
63 64 65
|
3imtr4i |
|- ( -. ( A e. G \/ B e. F ) -> ( H i^i ( F vH G ) ) =/= ( ( H i^i F ) vH ( H i^i G ) ) ) |