Description: Law of noncontradiction with equality and inequality. (Contributed by NM, 3-Feb-2012) (Proof shortened by Wolf Lammen, 21-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | nonconne | |- -. ( A = B /\ A =/= B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fal | |- -. F. |
|
2 | eqneqall | |- ( A = B -> ( A =/= B -> F. ) ) |
|
3 | 2 | imp | |- ( ( A = B /\ A =/= B ) -> F. ) |
4 | 1 3 | mto | |- -. ( A = B /\ A =/= B ) |