Step |
Hyp |
Ref |
Expression |
1 |
|
nn0z |
|- ( B e. NN0 -> B e. ZZ ) |
2 |
1
|
ad2antlr |
|- ( ( ( A e. NN0 /\ B e. NN0 ) /\ ( ( B ^ 2 ) < A /\ A < ( ( B + 1 ) ^ 2 ) ) ) -> B e. ZZ ) |
3 |
|
simprl |
|- ( ( ( A e. NN0 /\ B e. NN0 ) /\ ( ( B ^ 2 ) < A /\ A < ( ( B + 1 ) ^ 2 ) ) ) -> ( B ^ 2 ) < A ) |
4 |
|
nn0re |
|- ( A e. NN0 -> A e. RR ) |
5 |
4
|
ad2antrr |
|- ( ( ( A e. NN0 /\ B e. NN0 ) /\ ( ( B ^ 2 ) < A /\ A < ( ( B + 1 ) ^ 2 ) ) ) -> A e. RR ) |
6 |
5
|
recnd |
|- ( ( ( A e. NN0 /\ B e. NN0 ) /\ ( ( B ^ 2 ) < A /\ A < ( ( B + 1 ) ^ 2 ) ) ) -> A e. CC ) |
7 |
6
|
sqsqrtd |
|- ( ( ( A e. NN0 /\ B e. NN0 ) /\ ( ( B ^ 2 ) < A /\ A < ( ( B + 1 ) ^ 2 ) ) ) -> ( ( sqrt ` A ) ^ 2 ) = A ) |
8 |
3 7
|
breqtrrd |
|- ( ( ( A e. NN0 /\ B e. NN0 ) /\ ( ( B ^ 2 ) < A /\ A < ( ( B + 1 ) ^ 2 ) ) ) -> ( B ^ 2 ) < ( ( sqrt ` A ) ^ 2 ) ) |
9 |
|
nn0re |
|- ( B e. NN0 -> B e. RR ) |
10 |
9
|
ad2antlr |
|- ( ( ( A e. NN0 /\ B e. NN0 ) /\ ( ( B ^ 2 ) < A /\ A < ( ( B + 1 ) ^ 2 ) ) ) -> B e. RR ) |
11 |
|
nn0ge0 |
|- ( A e. NN0 -> 0 <_ A ) |
12 |
11
|
ad2antrr |
|- ( ( ( A e. NN0 /\ B e. NN0 ) /\ ( ( B ^ 2 ) < A /\ A < ( ( B + 1 ) ^ 2 ) ) ) -> 0 <_ A ) |
13 |
5 12
|
resqrtcld |
|- ( ( ( A e. NN0 /\ B e. NN0 ) /\ ( ( B ^ 2 ) < A /\ A < ( ( B + 1 ) ^ 2 ) ) ) -> ( sqrt ` A ) e. RR ) |
14 |
|
nn0ge0 |
|- ( B e. NN0 -> 0 <_ B ) |
15 |
14
|
ad2antlr |
|- ( ( ( A e. NN0 /\ B e. NN0 ) /\ ( ( B ^ 2 ) < A /\ A < ( ( B + 1 ) ^ 2 ) ) ) -> 0 <_ B ) |
16 |
5 12
|
sqrtge0d |
|- ( ( ( A e. NN0 /\ B e. NN0 ) /\ ( ( B ^ 2 ) < A /\ A < ( ( B + 1 ) ^ 2 ) ) ) -> 0 <_ ( sqrt ` A ) ) |
17 |
10 13 15 16
|
lt2sqd |
|- ( ( ( A e. NN0 /\ B e. NN0 ) /\ ( ( B ^ 2 ) < A /\ A < ( ( B + 1 ) ^ 2 ) ) ) -> ( B < ( sqrt ` A ) <-> ( B ^ 2 ) < ( ( sqrt ` A ) ^ 2 ) ) ) |
18 |
8 17
|
mpbird |
|- ( ( ( A e. NN0 /\ B e. NN0 ) /\ ( ( B ^ 2 ) < A /\ A < ( ( B + 1 ) ^ 2 ) ) ) -> B < ( sqrt ` A ) ) |
19 |
|
simprr |
|- ( ( ( A e. NN0 /\ B e. NN0 ) /\ ( ( B ^ 2 ) < A /\ A < ( ( B + 1 ) ^ 2 ) ) ) -> A < ( ( B + 1 ) ^ 2 ) ) |
20 |
7 19
|
eqbrtrd |
|- ( ( ( A e. NN0 /\ B e. NN0 ) /\ ( ( B ^ 2 ) < A /\ A < ( ( B + 1 ) ^ 2 ) ) ) -> ( ( sqrt ` A ) ^ 2 ) < ( ( B + 1 ) ^ 2 ) ) |
21 |
|
peano2re |
|- ( B e. RR -> ( B + 1 ) e. RR ) |
22 |
10 21
|
syl |
|- ( ( ( A e. NN0 /\ B e. NN0 ) /\ ( ( B ^ 2 ) < A /\ A < ( ( B + 1 ) ^ 2 ) ) ) -> ( B + 1 ) e. RR ) |
23 |
|
peano2nn0 |
|- ( B e. NN0 -> ( B + 1 ) e. NN0 ) |
24 |
|
nn0ge0 |
|- ( ( B + 1 ) e. NN0 -> 0 <_ ( B + 1 ) ) |
25 |
23 24
|
syl |
|- ( B e. NN0 -> 0 <_ ( B + 1 ) ) |
26 |
25
|
ad2antlr |
|- ( ( ( A e. NN0 /\ B e. NN0 ) /\ ( ( B ^ 2 ) < A /\ A < ( ( B + 1 ) ^ 2 ) ) ) -> 0 <_ ( B + 1 ) ) |
27 |
13 22 16 26
|
lt2sqd |
|- ( ( ( A e. NN0 /\ B e. NN0 ) /\ ( ( B ^ 2 ) < A /\ A < ( ( B + 1 ) ^ 2 ) ) ) -> ( ( sqrt ` A ) < ( B + 1 ) <-> ( ( sqrt ` A ) ^ 2 ) < ( ( B + 1 ) ^ 2 ) ) ) |
28 |
20 27
|
mpbird |
|- ( ( ( A e. NN0 /\ B e. NN0 ) /\ ( ( B ^ 2 ) < A /\ A < ( ( B + 1 ) ^ 2 ) ) ) -> ( sqrt ` A ) < ( B + 1 ) ) |
29 |
|
btwnnz |
|- ( ( B e. ZZ /\ B < ( sqrt ` A ) /\ ( sqrt ` A ) < ( B + 1 ) ) -> -. ( sqrt ` A ) e. ZZ ) |
30 |
2 18 28 29
|
syl3anc |
|- ( ( ( A e. NN0 /\ B e. NN0 ) /\ ( ( B ^ 2 ) < A /\ A < ( ( B + 1 ) ^ 2 ) ) ) -> -. ( sqrt ` A ) e. ZZ ) |
31 |
|
nn0z |
|- ( A e. NN0 -> A e. ZZ ) |
32 |
31
|
ad2antrr |
|- ( ( ( A e. NN0 /\ B e. NN0 ) /\ ( ( B ^ 2 ) < A /\ A < ( ( B + 1 ) ^ 2 ) ) ) -> A e. ZZ ) |
33 |
|
zsqrtelqelz |
|- ( ( A e. ZZ /\ ( sqrt ` A ) e. QQ ) -> ( sqrt ` A ) e. ZZ ) |
34 |
33
|
ex |
|- ( A e. ZZ -> ( ( sqrt ` A ) e. QQ -> ( sqrt ` A ) e. ZZ ) ) |
35 |
32 34
|
syl |
|- ( ( ( A e. NN0 /\ B e. NN0 ) /\ ( ( B ^ 2 ) < A /\ A < ( ( B + 1 ) ^ 2 ) ) ) -> ( ( sqrt ` A ) e. QQ -> ( sqrt ` A ) e. ZZ ) ) |
36 |
30 35
|
mtod |
|- ( ( ( A e. NN0 /\ B e. NN0 ) /\ ( ( B ^ 2 ) < A /\ A < ( ( B + 1 ) ^ 2 ) ) ) -> -. ( sqrt ` A ) e. QQ ) |