Description: A member of an ordinal class is not equal to it. (Contributed by NM, 25-May-1998)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nordeq | |- ( ( Ord A /\ B e. A ) -> A =/= B ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ordirr | |- ( Ord A -> -. A e. A ) | |
| 2 | eleq1 | |- ( A = B -> ( A e. A <-> B e. A ) ) | |
| 3 | 2 | notbid | |- ( A = B -> ( -. A e. A <-> -. B e. A ) ) | 
| 4 | 1 3 | syl5ibcom | |- ( Ord A -> ( A = B -> -. B e. A ) ) | 
| 5 | 4 | necon2ad | |- ( Ord A -> ( B e. A -> A =/= B ) ) | 
| 6 | 5 | imp | |- ( ( Ord A /\ B e. A ) -> A =/= B ) |