| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							norec2.1 | 
							 |-  F = norec2 ( G )  | 
						
						
							| 2 | 
							
								
							 | 
							df-ov | 
							 |-  ( A F B ) = ( F ` <. A , B >. )  | 
						
						
							| 3 | 
							
								
							 | 
							opelxp | 
							 |-  ( <. A , B >. e. ( No X. No ) <-> ( A e. No /\ B e. No ) )  | 
						
						
							| 4 | 
							
								
							 | 
							eqid | 
							 |-  { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } = { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } | 
						
						
							| 5 | 
							
								
							 | 
							eqid | 
							 |-  { <. a , b >. | ( a e. ( No X. No ) /\ b e. ( No X. No ) /\ ( ( ( 1st ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 1st ` b ) \/ ( 1st ` a ) = ( 1st ` b ) ) /\ ( ( 2nd ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 2nd ` b ) \/ ( 2nd ` a ) = ( 2nd ` b ) ) /\ a =/= b ) ) } = { <. a , b >. | ( a e. ( No X. No ) /\ b e. ( No X. No ) /\ ( ( ( 1st ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 1st ` b ) \/ ( 1st ` a ) = ( 1st ` b ) ) /\ ( ( 2nd ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 2nd ` b ) \/ ( 2nd ` a ) = ( 2nd ` b ) ) /\ a =/= b ) ) } | 
						
						
							| 6 | 
							
								4 5
							 | 
							noxpordfr | 
							 |-  { <. a , b >. | ( a e. ( No X. No ) /\ b e. ( No X. No ) /\ ( ( ( 1st ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 1st ` b ) \/ ( 1st ` a ) = ( 1st ` b ) ) /\ ( ( 2nd ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 2nd ` b ) \/ ( 2nd ` a ) = ( 2nd ` b ) ) /\ a =/= b ) ) } Fr ( No X. No ) | 
						
						
							| 7 | 
							
								4 5
							 | 
							noxpordpo | 
							 |-  { <. a , b >. | ( a e. ( No X. No ) /\ b e. ( No X. No ) /\ ( ( ( 1st ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 1st ` b ) \/ ( 1st ` a ) = ( 1st ` b ) ) /\ ( ( 2nd ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 2nd ` b ) \/ ( 2nd ` a ) = ( 2nd ` b ) ) /\ a =/= b ) ) } Po ( No X. No ) | 
						
						
							| 8 | 
							
								4 5
							 | 
							noxpordse | 
							 |-  { <. a , b >. | ( a e. ( No X. No ) /\ b e. ( No X. No ) /\ ( ( ( 1st ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 1st ` b ) \/ ( 1st ` a ) = ( 1st ` b ) ) /\ ( ( 2nd ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 2nd ` b ) \/ ( 2nd ` a ) = ( 2nd ` b ) ) /\ a =/= b ) ) } Se ( No X. No ) | 
						
						
							| 9 | 
							
								6 7 8
							 | 
							3pm3.2i | 
							 |-  ( { <. a , b >. | ( a e. ( No X. No ) /\ b e. ( No X. No ) /\ ( ( ( 1st ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 1st ` b ) \/ ( 1st ` a ) = ( 1st ` b ) ) /\ ( ( 2nd ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 2nd ` b ) \/ ( 2nd ` a ) = ( 2nd ` b ) ) /\ a =/= b ) ) } Fr ( No X. No ) /\ { <. a , b >. | ( a e. ( No X. No ) /\ b e. ( No X. No ) /\ ( ( ( 1st ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 1st ` b ) \/ ( 1st ` a ) = ( 1st ` b ) ) /\ ( ( 2nd ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 2nd ` b ) \/ ( 2nd ` a ) = ( 2nd ` b ) ) /\ a =/= b ) ) } Po ( No X. No ) /\ { <. a , b >. | ( a e. ( No X. No ) /\ b e. ( No X. No ) /\ ( ( ( 1st ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 1st ` b ) \/ ( 1st ` a ) = ( 1st ` b ) ) /\ ( ( 2nd ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 2nd ` b ) \/ ( 2nd ` a ) = ( 2nd ` b ) ) /\ a =/= b ) ) } Se ( No X. No ) ) | 
						
						
							| 10 | 
							
								
							 | 
							df-norec2 | 
							 |-  norec2 ( G ) = frecs ( { <. a , b >. | ( a e. ( No X. No ) /\ b e. ( No X. No ) /\ ( ( ( 1st ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 1st ` b ) \/ ( 1st ` a ) = ( 1st ` b ) ) /\ ( ( 2nd ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 2nd ` b ) \/ ( 2nd ` a ) = ( 2nd ` b ) ) /\ a =/= b ) ) } , ( No X. No ) , G ) | 
						
						
							| 11 | 
							
								1 10
							 | 
							eqtri | 
							 |-  F = frecs ( { <. a , b >. | ( a e. ( No X. No ) /\ b e. ( No X. No ) /\ ( ( ( 1st ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 1st ` b ) \/ ( 1st ` a ) = ( 1st ` b ) ) /\ ( ( 2nd ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 2nd ` b ) \/ ( 2nd ` a ) = ( 2nd ` b ) ) /\ a =/= b ) ) } , ( No X. No ) , G ) | 
						
						
							| 12 | 
							
								11
							 | 
							fpr2 | 
							 |-  ( ( ( { <. a , b >. | ( a e. ( No X. No ) /\ b e. ( No X. No ) /\ ( ( ( 1st ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 1st ` b ) \/ ( 1st ` a ) = ( 1st ` b ) ) /\ ( ( 2nd ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 2nd ` b ) \/ ( 2nd ` a ) = ( 2nd ` b ) ) /\ a =/= b ) ) } Fr ( No X. No ) /\ { <. a , b >. | ( a e. ( No X. No ) /\ b e. ( No X. No ) /\ ( ( ( 1st ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 1st ` b ) \/ ( 1st ` a ) = ( 1st ` b ) ) /\ ( ( 2nd ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 2nd ` b ) \/ ( 2nd ` a ) = ( 2nd ` b ) ) /\ a =/= b ) ) } Po ( No X. No ) /\ { <. a , b >. | ( a e. ( No X. No ) /\ b e. ( No X. No ) /\ ( ( ( 1st ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 1st ` b ) \/ ( 1st ` a ) = ( 1st ` b ) ) /\ ( ( 2nd ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 2nd ` b ) \/ ( 2nd ` a ) = ( 2nd ` b ) ) /\ a =/= b ) ) } Se ( No X. No ) ) /\ <. A , B >. e. ( No X. No ) ) -> ( F ` <. A , B >. ) = ( <. A , B >. G ( F |` Pred ( { <. a , b >. | ( a e. ( No X. No ) /\ b e. ( No X. No ) /\ ( ( ( 1st ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 1st ` b ) \/ ( 1st ` a ) = ( 1st ` b ) ) /\ ( ( 2nd ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 2nd ` b ) \/ ( 2nd ` a ) = ( 2nd ` b ) ) /\ a =/= b ) ) } , ( No X. No ) , <. A , B >. ) ) ) ) | 
						
						
							| 13 | 
							
								9 12
							 | 
							mpan | 
							 |-  ( <. A , B >. e. ( No X. No ) -> ( F ` <. A , B >. ) = ( <. A , B >. G ( F |` Pred ( { <. a , b >. | ( a e. ( No X. No ) /\ b e. ( No X. No ) /\ ( ( ( 1st ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 1st ` b ) \/ ( 1st ` a ) = ( 1st ` b ) ) /\ ( ( 2nd ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 2nd ` b ) \/ ( 2nd ` a ) = ( 2nd ` b ) ) /\ a =/= b ) ) } , ( No X. No ) , <. A , B >. ) ) ) ) | 
						
						
							| 14 | 
							
								3 13
							 | 
							sylbir | 
							 |-  ( ( A e. No /\ B e. No ) -> ( F ` <. A , B >. ) = ( <. A , B >. G ( F |` Pred ( { <. a , b >. | ( a e. ( No X. No ) /\ b e. ( No X. No ) /\ ( ( ( 1st ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 1st ` b ) \/ ( 1st ` a ) = ( 1st ` b ) ) /\ ( ( 2nd ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 2nd ` b ) \/ ( 2nd ` a ) = ( 2nd ` b ) ) /\ a =/= b ) ) } , ( No X. No ) , <. A , B >. ) ) ) ) | 
						
						
							| 15 | 
							
								2 14
							 | 
							eqtrid | 
							 |-  ( ( A e. No /\ B e. No ) -> ( A F B ) = ( <. A , B >. G ( F |` Pred ( { <. a , b >. | ( a e. ( No X. No ) /\ b e. ( No X. No ) /\ ( ( ( 1st ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 1st ` b ) \/ ( 1st ` a ) = ( 1st ` b ) ) /\ ( ( 2nd ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 2nd ` b ) \/ ( 2nd ` a ) = ( 2nd ` b ) ) /\ a =/= b ) ) } , ( No X. No ) , <. A , B >. ) ) ) ) | 
						
						
							| 16 | 
							
								4 5
							 | 
							noxpordpred | 
							 |-  ( ( A e. No /\ B e. No ) -> Pred ( { <. a , b >. | ( a e. ( No X. No ) /\ b e. ( No X. No ) /\ ( ( ( 1st ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 1st ` b ) \/ ( 1st ` a ) = ( 1st ` b ) ) /\ ( ( 2nd ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 2nd ` b ) \/ ( 2nd ` a ) = ( 2nd ` b ) ) /\ a =/= b ) ) } , ( No X. No ) , <. A , B >. ) = ( ( ( ( ( _Left ` A ) u. ( _Right ` A ) ) u. { A } ) X. ( ( ( _Left ` B ) u. ( _Right ` B ) ) u. { B } ) ) \ { <. A , B >. } ) ) | 
						
						
							| 17 | 
							
								16
							 | 
							reseq2d | 
							 |-  ( ( A e. No /\ B e. No ) -> ( F |` Pred ( { <. a , b >. | ( a e. ( No X. No ) /\ b e. ( No X. No ) /\ ( ( ( 1st ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 1st ` b ) \/ ( 1st ` a ) = ( 1st ` b ) ) /\ ( ( 2nd ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 2nd ` b ) \/ ( 2nd ` a ) = ( 2nd ` b ) ) /\ a =/= b ) ) } , ( No X. No ) , <. A , B >. ) ) = ( F |` ( ( ( ( ( _Left ` A ) u. ( _Right ` A ) ) u. { A } ) X. ( ( ( _Left ` B ) u. ( _Right ` B ) ) u. { B } ) ) \ { <. A , B >. } ) ) ) | 
						
						
							| 18 | 
							
								17
							 | 
							oveq2d | 
							 |-  ( ( A e. No /\ B e. No ) -> ( <. A , B >. G ( F |` Pred ( { <. a , b >. | ( a e. ( No X. No ) /\ b e. ( No X. No ) /\ ( ( ( 1st ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 1st ` b ) \/ ( 1st ` a ) = ( 1st ` b ) ) /\ ( ( 2nd ` a ) { <. c , d >. | c e. ( ( _Left ` d ) u. ( _Right ` d ) ) } ( 2nd ` b ) \/ ( 2nd ` a ) = ( 2nd ` b ) ) /\ a =/= b ) ) } , ( No X. No ) , <. A , B >. ) ) ) = ( <. A , B >. G ( F |` ( ( ( ( ( _Left ` A ) u. ( _Right ` A ) ) u. { A } ) X. ( ( ( _Left ` B ) u. ( _Right ` B ) ) u. { B } ) ) \ { <. A , B >. } ) ) ) ) | 
						
						
							| 19 | 
							
								15 18
							 | 
							eqtrd | 
							 |-  ( ( A e. No /\ B e. No ) -> ( A F B ) = ( <. A , B >. G ( F |` ( ( ( ( ( _Left ` A ) u. ( _Right ` A ) ) u. { A } ) X. ( ( ( _Left ` B ) u. ( _Right ` B ) ) u. { B } ) ) \ { <. A , B >. } ) ) ) ) |