| Step | Hyp | Ref | Expression | 
						
							| 1 |  | normgt0 |  |-  ( A e. ~H -> ( A =/= 0h <-> 0 < ( normh ` A ) ) ) | 
						
							| 2 |  | normcl |  |-  ( A e. ~H -> ( normh ` A ) e. RR ) | 
						
							| 3 |  | normge0 |  |-  ( A e. ~H -> 0 <_ ( normh ` A ) ) | 
						
							| 4 |  | 0re |  |-  0 e. RR | 
						
							| 5 |  | leltne |  |-  ( ( 0 e. RR /\ ( normh ` A ) e. RR /\ 0 <_ ( normh ` A ) ) -> ( 0 < ( normh ` A ) <-> ( normh ` A ) =/= 0 ) ) | 
						
							| 6 | 4 5 | mp3an1 |  |-  ( ( ( normh ` A ) e. RR /\ 0 <_ ( normh ` A ) ) -> ( 0 < ( normh ` A ) <-> ( normh ` A ) =/= 0 ) ) | 
						
							| 7 | 2 3 6 | syl2anc |  |-  ( A e. ~H -> ( 0 < ( normh ` A ) <-> ( normh ` A ) =/= 0 ) ) | 
						
							| 8 | 1 7 | bitrd |  |-  ( A e. ~H -> ( A =/= 0h <-> ( normh ` A ) =/= 0 ) ) | 
						
							| 9 | 8 | necon4bid |  |-  ( A e. ~H -> ( A = 0h <-> ( normh ` A ) = 0 ) ) | 
						
							| 10 | 9 | bicomd |  |-  ( A e. ~H -> ( ( normh ` A ) = 0 <-> A = 0h ) ) |