Step |
Hyp |
Ref |
Expression |
1 |
|
normgt0 |
|- ( A e. ~H -> ( A =/= 0h <-> 0 < ( normh ` A ) ) ) |
2 |
|
normcl |
|- ( A e. ~H -> ( normh ` A ) e. RR ) |
3 |
|
normge0 |
|- ( A e. ~H -> 0 <_ ( normh ` A ) ) |
4 |
|
0re |
|- 0 e. RR |
5 |
|
leltne |
|- ( ( 0 e. RR /\ ( normh ` A ) e. RR /\ 0 <_ ( normh ` A ) ) -> ( 0 < ( normh ` A ) <-> ( normh ` A ) =/= 0 ) ) |
6 |
4 5
|
mp3an1 |
|- ( ( ( normh ` A ) e. RR /\ 0 <_ ( normh ` A ) ) -> ( 0 < ( normh ` A ) <-> ( normh ` A ) =/= 0 ) ) |
7 |
2 3 6
|
syl2anc |
|- ( A e. ~H -> ( 0 < ( normh ` A ) <-> ( normh ` A ) =/= 0 ) ) |
8 |
1 7
|
bitrd |
|- ( A e. ~H -> ( A =/= 0h <-> ( normh ` A ) =/= 0 ) ) |
9 |
8
|
necon4bid |
|- ( A e. ~H -> ( A = 0h <-> ( normh ` A ) = 0 ) ) |
10 |
9
|
bicomd |
|- ( A e. ~H -> ( ( normh ` A ) = 0 <-> A = 0h ) ) |