Description: Theorem 3.3(i) of Beran p. 97. (Contributed by NM, 5-Sep-1999) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypothesis | normcl.1 | |- A e. ~H |
|
Assertion | norm-i-i | |- ( ( normh ` A ) = 0 <-> A = 0h ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | normcl.1 | |- A e. ~H |
|
2 | norm-i | |- ( A e. ~H -> ( ( normh ` A ) = 0 <-> A = 0h ) ) |
|
3 | 1 2 | ax-mp | |- ( ( normh ` A ) = 0 <-> A = 0h ) |