| Step |
Hyp |
Ref |
Expression |
| 1 |
|
norm-ii.1 |
|- A e. ~H |
| 2 |
|
norm-ii.2 |
|- B e. ~H |
| 3 |
|
1re |
|- 1 e. RR |
| 4 |
|
ax-1cn |
|- 1 e. CC |
| 5 |
4
|
cjrebi |
|- ( 1 e. RR <-> ( * ` 1 ) = 1 ) |
| 6 |
3 5
|
mpbi |
|- ( * ` 1 ) = 1 |
| 7 |
6
|
oveq1i |
|- ( ( * ` 1 ) x. ( B .ih A ) ) = ( 1 x. ( B .ih A ) ) |
| 8 |
2 1
|
hicli |
|- ( B .ih A ) e. CC |
| 9 |
8
|
mullidi |
|- ( 1 x. ( B .ih A ) ) = ( B .ih A ) |
| 10 |
7 9
|
eqtri |
|- ( ( * ` 1 ) x. ( B .ih A ) ) = ( B .ih A ) |
| 11 |
1 2
|
hicli |
|- ( A .ih B ) e. CC |
| 12 |
11
|
mullidi |
|- ( 1 x. ( A .ih B ) ) = ( A .ih B ) |
| 13 |
10 12
|
oveq12i |
|- ( ( ( * ` 1 ) x. ( B .ih A ) ) + ( 1 x. ( A .ih B ) ) ) = ( ( B .ih A ) + ( A .ih B ) ) |
| 14 |
|
abs1 |
|- ( abs ` 1 ) = 1 |
| 15 |
4 2 1 14
|
normlem7 |
|- ( ( ( * ` 1 ) x. ( B .ih A ) ) + ( 1 x. ( A .ih B ) ) ) <_ ( 2 x. ( ( sqrt ` ( A .ih A ) ) x. ( sqrt ` ( B .ih B ) ) ) ) |
| 16 |
13 15
|
eqbrtrri |
|- ( ( B .ih A ) + ( A .ih B ) ) <_ ( 2 x. ( ( sqrt ` ( A .ih A ) ) x. ( sqrt ` ( B .ih B ) ) ) ) |
| 17 |
|
eqid |
|- -u ( ( ( * ` 1 ) x. ( B .ih A ) ) + ( 1 x. ( A .ih B ) ) ) = -u ( ( ( * ` 1 ) x. ( B .ih A ) ) + ( 1 x. ( A .ih B ) ) ) |
| 18 |
4 2 1 17
|
normlem2 |
|- -u ( ( ( * ` 1 ) x. ( B .ih A ) ) + ( 1 x. ( A .ih B ) ) ) e. RR |
| 19 |
4
|
cjcli |
|- ( * ` 1 ) e. CC |
| 20 |
19 8
|
mulcli |
|- ( ( * ` 1 ) x. ( B .ih A ) ) e. CC |
| 21 |
4 11
|
mulcli |
|- ( 1 x. ( A .ih B ) ) e. CC |
| 22 |
20 21
|
addcli |
|- ( ( ( * ` 1 ) x. ( B .ih A ) ) + ( 1 x. ( A .ih B ) ) ) e. CC |
| 23 |
22
|
negrebi |
|- ( -u ( ( ( * ` 1 ) x. ( B .ih A ) ) + ( 1 x. ( A .ih B ) ) ) e. RR <-> ( ( ( * ` 1 ) x. ( B .ih A ) ) + ( 1 x. ( A .ih B ) ) ) e. RR ) |
| 24 |
18 23
|
mpbi |
|- ( ( ( * ` 1 ) x. ( B .ih A ) ) + ( 1 x. ( A .ih B ) ) ) e. RR |
| 25 |
13 24
|
eqeltrri |
|- ( ( B .ih A ) + ( A .ih B ) ) e. RR |
| 26 |
|
2re |
|- 2 e. RR |
| 27 |
|
hiidge0 |
|- ( A e. ~H -> 0 <_ ( A .ih A ) ) |
| 28 |
1 27
|
ax-mp |
|- 0 <_ ( A .ih A ) |
| 29 |
|
hiidrcl |
|- ( A e. ~H -> ( A .ih A ) e. RR ) |
| 30 |
1 29
|
ax-mp |
|- ( A .ih A ) e. RR |
| 31 |
30
|
sqrtcli |
|- ( 0 <_ ( A .ih A ) -> ( sqrt ` ( A .ih A ) ) e. RR ) |
| 32 |
28 31
|
ax-mp |
|- ( sqrt ` ( A .ih A ) ) e. RR |
| 33 |
|
hiidge0 |
|- ( B e. ~H -> 0 <_ ( B .ih B ) ) |
| 34 |
2 33
|
ax-mp |
|- 0 <_ ( B .ih B ) |
| 35 |
|
hiidrcl |
|- ( B e. ~H -> ( B .ih B ) e. RR ) |
| 36 |
2 35
|
ax-mp |
|- ( B .ih B ) e. RR |
| 37 |
36
|
sqrtcli |
|- ( 0 <_ ( B .ih B ) -> ( sqrt ` ( B .ih B ) ) e. RR ) |
| 38 |
34 37
|
ax-mp |
|- ( sqrt ` ( B .ih B ) ) e. RR |
| 39 |
32 38
|
remulcli |
|- ( ( sqrt ` ( A .ih A ) ) x. ( sqrt ` ( B .ih B ) ) ) e. RR |
| 40 |
26 39
|
remulcli |
|- ( 2 x. ( ( sqrt ` ( A .ih A ) ) x. ( sqrt ` ( B .ih B ) ) ) ) e. RR |
| 41 |
30 36
|
readdcli |
|- ( ( A .ih A ) + ( B .ih B ) ) e. RR |
| 42 |
25 40 41
|
leadd2i |
|- ( ( ( B .ih A ) + ( A .ih B ) ) <_ ( 2 x. ( ( sqrt ` ( A .ih A ) ) x. ( sqrt ` ( B .ih B ) ) ) ) <-> ( ( ( A .ih A ) + ( B .ih B ) ) + ( ( B .ih A ) + ( A .ih B ) ) ) <_ ( ( ( A .ih A ) + ( B .ih B ) ) + ( 2 x. ( ( sqrt ` ( A .ih A ) ) x. ( sqrt ` ( B .ih B ) ) ) ) ) ) |
| 43 |
16 42
|
mpbi |
|- ( ( ( A .ih A ) + ( B .ih B ) ) + ( ( B .ih A ) + ( A .ih B ) ) ) <_ ( ( ( A .ih A ) + ( B .ih B ) ) + ( 2 x. ( ( sqrt ` ( A .ih A ) ) x. ( sqrt ` ( B .ih B ) ) ) ) ) |
| 44 |
1 2 1 2
|
normlem8 |
|- ( ( A +h B ) .ih ( A +h B ) ) = ( ( ( A .ih A ) + ( B .ih B ) ) + ( ( A .ih B ) + ( B .ih A ) ) ) |
| 45 |
11 8
|
addcomi |
|- ( ( A .ih B ) + ( B .ih A ) ) = ( ( B .ih A ) + ( A .ih B ) ) |
| 46 |
45
|
oveq2i |
|- ( ( ( A .ih A ) + ( B .ih B ) ) + ( ( A .ih B ) + ( B .ih A ) ) ) = ( ( ( A .ih A ) + ( B .ih B ) ) + ( ( B .ih A ) + ( A .ih B ) ) ) |
| 47 |
44 46
|
eqtri |
|- ( ( A +h B ) .ih ( A +h B ) ) = ( ( ( A .ih A ) + ( B .ih B ) ) + ( ( B .ih A ) + ( A .ih B ) ) ) |
| 48 |
32
|
recni |
|- ( sqrt ` ( A .ih A ) ) e. CC |
| 49 |
38
|
recni |
|- ( sqrt ` ( B .ih B ) ) e. CC |
| 50 |
48 49
|
binom2i |
|- ( ( ( sqrt ` ( A .ih A ) ) + ( sqrt ` ( B .ih B ) ) ) ^ 2 ) = ( ( ( ( sqrt ` ( A .ih A ) ) ^ 2 ) + ( 2 x. ( ( sqrt ` ( A .ih A ) ) x. ( sqrt ` ( B .ih B ) ) ) ) ) + ( ( sqrt ` ( B .ih B ) ) ^ 2 ) ) |
| 51 |
48
|
sqcli |
|- ( ( sqrt ` ( A .ih A ) ) ^ 2 ) e. CC |
| 52 |
|
2cn |
|- 2 e. CC |
| 53 |
48 49
|
mulcli |
|- ( ( sqrt ` ( A .ih A ) ) x. ( sqrt ` ( B .ih B ) ) ) e. CC |
| 54 |
52 53
|
mulcli |
|- ( 2 x. ( ( sqrt ` ( A .ih A ) ) x. ( sqrt ` ( B .ih B ) ) ) ) e. CC |
| 55 |
49
|
sqcli |
|- ( ( sqrt ` ( B .ih B ) ) ^ 2 ) e. CC |
| 56 |
51 54 55
|
add32i |
|- ( ( ( ( sqrt ` ( A .ih A ) ) ^ 2 ) + ( 2 x. ( ( sqrt ` ( A .ih A ) ) x. ( sqrt ` ( B .ih B ) ) ) ) ) + ( ( sqrt ` ( B .ih B ) ) ^ 2 ) ) = ( ( ( ( sqrt ` ( A .ih A ) ) ^ 2 ) + ( ( sqrt ` ( B .ih B ) ) ^ 2 ) ) + ( 2 x. ( ( sqrt ` ( A .ih A ) ) x. ( sqrt ` ( B .ih B ) ) ) ) ) |
| 57 |
30
|
sqsqrti |
|- ( 0 <_ ( A .ih A ) -> ( ( sqrt ` ( A .ih A ) ) ^ 2 ) = ( A .ih A ) ) |
| 58 |
28 57
|
ax-mp |
|- ( ( sqrt ` ( A .ih A ) ) ^ 2 ) = ( A .ih A ) |
| 59 |
36
|
sqsqrti |
|- ( 0 <_ ( B .ih B ) -> ( ( sqrt ` ( B .ih B ) ) ^ 2 ) = ( B .ih B ) ) |
| 60 |
34 59
|
ax-mp |
|- ( ( sqrt ` ( B .ih B ) ) ^ 2 ) = ( B .ih B ) |
| 61 |
58 60
|
oveq12i |
|- ( ( ( sqrt ` ( A .ih A ) ) ^ 2 ) + ( ( sqrt ` ( B .ih B ) ) ^ 2 ) ) = ( ( A .ih A ) + ( B .ih B ) ) |
| 62 |
61
|
oveq1i |
|- ( ( ( ( sqrt ` ( A .ih A ) ) ^ 2 ) + ( ( sqrt ` ( B .ih B ) ) ^ 2 ) ) + ( 2 x. ( ( sqrt ` ( A .ih A ) ) x. ( sqrt ` ( B .ih B ) ) ) ) ) = ( ( ( A .ih A ) + ( B .ih B ) ) + ( 2 x. ( ( sqrt ` ( A .ih A ) ) x. ( sqrt ` ( B .ih B ) ) ) ) ) |
| 63 |
50 56 62
|
3eqtri |
|- ( ( ( sqrt ` ( A .ih A ) ) + ( sqrt ` ( B .ih B ) ) ) ^ 2 ) = ( ( ( A .ih A ) + ( B .ih B ) ) + ( 2 x. ( ( sqrt ` ( A .ih A ) ) x. ( sqrt ` ( B .ih B ) ) ) ) ) |
| 64 |
43 47 63
|
3brtr4i |
|- ( ( A +h B ) .ih ( A +h B ) ) <_ ( ( ( sqrt ` ( A .ih A ) ) + ( sqrt ` ( B .ih B ) ) ) ^ 2 ) |
| 65 |
1 2
|
hvaddcli |
|- ( A +h B ) e. ~H |
| 66 |
|
hiidge0 |
|- ( ( A +h B ) e. ~H -> 0 <_ ( ( A +h B ) .ih ( A +h B ) ) ) |
| 67 |
65 66
|
ax-mp |
|- 0 <_ ( ( A +h B ) .ih ( A +h B ) ) |
| 68 |
32 38
|
readdcli |
|- ( ( sqrt ` ( A .ih A ) ) + ( sqrt ` ( B .ih B ) ) ) e. RR |
| 69 |
68
|
sqge0i |
|- 0 <_ ( ( ( sqrt ` ( A .ih A ) ) + ( sqrt ` ( B .ih B ) ) ) ^ 2 ) |
| 70 |
|
hiidrcl |
|- ( ( A +h B ) e. ~H -> ( ( A +h B ) .ih ( A +h B ) ) e. RR ) |
| 71 |
65 70
|
ax-mp |
|- ( ( A +h B ) .ih ( A +h B ) ) e. RR |
| 72 |
68
|
resqcli |
|- ( ( ( sqrt ` ( A .ih A ) ) + ( sqrt ` ( B .ih B ) ) ) ^ 2 ) e. RR |
| 73 |
71 72
|
sqrtlei |
|- ( ( 0 <_ ( ( A +h B ) .ih ( A +h B ) ) /\ 0 <_ ( ( ( sqrt ` ( A .ih A ) ) + ( sqrt ` ( B .ih B ) ) ) ^ 2 ) ) -> ( ( ( A +h B ) .ih ( A +h B ) ) <_ ( ( ( sqrt ` ( A .ih A ) ) + ( sqrt ` ( B .ih B ) ) ) ^ 2 ) <-> ( sqrt ` ( ( A +h B ) .ih ( A +h B ) ) ) <_ ( sqrt ` ( ( ( sqrt ` ( A .ih A ) ) + ( sqrt ` ( B .ih B ) ) ) ^ 2 ) ) ) ) |
| 74 |
67 69 73
|
mp2an |
|- ( ( ( A +h B ) .ih ( A +h B ) ) <_ ( ( ( sqrt ` ( A .ih A ) ) + ( sqrt ` ( B .ih B ) ) ) ^ 2 ) <-> ( sqrt ` ( ( A +h B ) .ih ( A +h B ) ) ) <_ ( sqrt ` ( ( ( sqrt ` ( A .ih A ) ) + ( sqrt ` ( B .ih B ) ) ) ^ 2 ) ) ) |
| 75 |
64 74
|
mpbi |
|- ( sqrt ` ( ( A +h B ) .ih ( A +h B ) ) ) <_ ( sqrt ` ( ( ( sqrt ` ( A .ih A ) ) + ( sqrt ` ( B .ih B ) ) ) ^ 2 ) ) |
| 76 |
30
|
sqrtge0i |
|- ( 0 <_ ( A .ih A ) -> 0 <_ ( sqrt ` ( A .ih A ) ) ) |
| 77 |
28 76
|
ax-mp |
|- 0 <_ ( sqrt ` ( A .ih A ) ) |
| 78 |
36
|
sqrtge0i |
|- ( 0 <_ ( B .ih B ) -> 0 <_ ( sqrt ` ( B .ih B ) ) ) |
| 79 |
34 78
|
ax-mp |
|- 0 <_ ( sqrt ` ( B .ih B ) ) |
| 80 |
32 38
|
addge0i |
|- ( ( 0 <_ ( sqrt ` ( A .ih A ) ) /\ 0 <_ ( sqrt ` ( B .ih B ) ) ) -> 0 <_ ( ( sqrt ` ( A .ih A ) ) + ( sqrt ` ( B .ih B ) ) ) ) |
| 81 |
77 79 80
|
mp2an |
|- 0 <_ ( ( sqrt ` ( A .ih A ) ) + ( sqrt ` ( B .ih B ) ) ) |
| 82 |
68
|
sqrtsqi |
|- ( 0 <_ ( ( sqrt ` ( A .ih A ) ) + ( sqrt ` ( B .ih B ) ) ) -> ( sqrt ` ( ( ( sqrt ` ( A .ih A ) ) + ( sqrt ` ( B .ih B ) ) ) ^ 2 ) ) = ( ( sqrt ` ( A .ih A ) ) + ( sqrt ` ( B .ih B ) ) ) ) |
| 83 |
81 82
|
ax-mp |
|- ( sqrt ` ( ( ( sqrt ` ( A .ih A ) ) + ( sqrt ` ( B .ih B ) ) ) ^ 2 ) ) = ( ( sqrt ` ( A .ih A ) ) + ( sqrt ` ( B .ih B ) ) ) |
| 84 |
75 83
|
breqtri |
|- ( sqrt ` ( ( A +h B ) .ih ( A +h B ) ) ) <_ ( ( sqrt ` ( A .ih A ) ) + ( sqrt ` ( B .ih B ) ) ) |
| 85 |
|
normval |
|- ( ( A +h B ) e. ~H -> ( normh ` ( A +h B ) ) = ( sqrt ` ( ( A +h B ) .ih ( A +h B ) ) ) ) |
| 86 |
65 85
|
ax-mp |
|- ( normh ` ( A +h B ) ) = ( sqrt ` ( ( A +h B ) .ih ( A +h B ) ) ) |
| 87 |
|
normval |
|- ( A e. ~H -> ( normh ` A ) = ( sqrt ` ( A .ih A ) ) ) |
| 88 |
1 87
|
ax-mp |
|- ( normh ` A ) = ( sqrt ` ( A .ih A ) ) |
| 89 |
|
normval |
|- ( B e. ~H -> ( normh ` B ) = ( sqrt ` ( B .ih B ) ) ) |
| 90 |
2 89
|
ax-mp |
|- ( normh ` B ) = ( sqrt ` ( B .ih B ) ) |
| 91 |
88 90
|
oveq12i |
|- ( ( normh ` A ) + ( normh ` B ) ) = ( ( sqrt ` ( A .ih A ) ) + ( sqrt ` ( B .ih B ) ) ) |
| 92 |
84 86 91
|
3brtr4i |
|- ( normh ` ( A +h B ) ) <_ ( ( normh ` A ) + ( normh ` B ) ) |