Step |
Hyp |
Ref |
Expression |
1 |
|
norm-ii.1 |
|- A e. ~H |
2 |
|
norm-ii.2 |
|- B e. ~H |
3 |
|
1re |
|- 1 e. RR |
4 |
|
ax-1cn |
|- 1 e. CC |
5 |
4
|
cjrebi |
|- ( 1 e. RR <-> ( * ` 1 ) = 1 ) |
6 |
3 5
|
mpbi |
|- ( * ` 1 ) = 1 |
7 |
6
|
oveq1i |
|- ( ( * ` 1 ) x. ( B .ih A ) ) = ( 1 x. ( B .ih A ) ) |
8 |
2 1
|
hicli |
|- ( B .ih A ) e. CC |
9 |
8
|
mulid2i |
|- ( 1 x. ( B .ih A ) ) = ( B .ih A ) |
10 |
7 9
|
eqtri |
|- ( ( * ` 1 ) x. ( B .ih A ) ) = ( B .ih A ) |
11 |
1 2
|
hicli |
|- ( A .ih B ) e. CC |
12 |
11
|
mulid2i |
|- ( 1 x. ( A .ih B ) ) = ( A .ih B ) |
13 |
10 12
|
oveq12i |
|- ( ( ( * ` 1 ) x. ( B .ih A ) ) + ( 1 x. ( A .ih B ) ) ) = ( ( B .ih A ) + ( A .ih B ) ) |
14 |
|
abs1 |
|- ( abs ` 1 ) = 1 |
15 |
4 2 1 14
|
normlem7 |
|- ( ( ( * ` 1 ) x. ( B .ih A ) ) + ( 1 x. ( A .ih B ) ) ) <_ ( 2 x. ( ( sqrt ` ( A .ih A ) ) x. ( sqrt ` ( B .ih B ) ) ) ) |
16 |
13 15
|
eqbrtrri |
|- ( ( B .ih A ) + ( A .ih B ) ) <_ ( 2 x. ( ( sqrt ` ( A .ih A ) ) x. ( sqrt ` ( B .ih B ) ) ) ) |
17 |
|
eqid |
|- -u ( ( ( * ` 1 ) x. ( B .ih A ) ) + ( 1 x. ( A .ih B ) ) ) = -u ( ( ( * ` 1 ) x. ( B .ih A ) ) + ( 1 x. ( A .ih B ) ) ) |
18 |
4 2 1 17
|
normlem2 |
|- -u ( ( ( * ` 1 ) x. ( B .ih A ) ) + ( 1 x. ( A .ih B ) ) ) e. RR |
19 |
4
|
cjcli |
|- ( * ` 1 ) e. CC |
20 |
19 8
|
mulcli |
|- ( ( * ` 1 ) x. ( B .ih A ) ) e. CC |
21 |
4 11
|
mulcli |
|- ( 1 x. ( A .ih B ) ) e. CC |
22 |
20 21
|
addcli |
|- ( ( ( * ` 1 ) x. ( B .ih A ) ) + ( 1 x. ( A .ih B ) ) ) e. CC |
23 |
22
|
negrebi |
|- ( -u ( ( ( * ` 1 ) x. ( B .ih A ) ) + ( 1 x. ( A .ih B ) ) ) e. RR <-> ( ( ( * ` 1 ) x. ( B .ih A ) ) + ( 1 x. ( A .ih B ) ) ) e. RR ) |
24 |
18 23
|
mpbi |
|- ( ( ( * ` 1 ) x. ( B .ih A ) ) + ( 1 x. ( A .ih B ) ) ) e. RR |
25 |
13 24
|
eqeltrri |
|- ( ( B .ih A ) + ( A .ih B ) ) e. RR |
26 |
|
2re |
|- 2 e. RR |
27 |
|
hiidge0 |
|- ( A e. ~H -> 0 <_ ( A .ih A ) ) |
28 |
1 27
|
ax-mp |
|- 0 <_ ( A .ih A ) |
29 |
|
hiidrcl |
|- ( A e. ~H -> ( A .ih A ) e. RR ) |
30 |
1 29
|
ax-mp |
|- ( A .ih A ) e. RR |
31 |
30
|
sqrtcli |
|- ( 0 <_ ( A .ih A ) -> ( sqrt ` ( A .ih A ) ) e. RR ) |
32 |
28 31
|
ax-mp |
|- ( sqrt ` ( A .ih A ) ) e. RR |
33 |
|
hiidge0 |
|- ( B e. ~H -> 0 <_ ( B .ih B ) ) |
34 |
2 33
|
ax-mp |
|- 0 <_ ( B .ih B ) |
35 |
|
hiidrcl |
|- ( B e. ~H -> ( B .ih B ) e. RR ) |
36 |
2 35
|
ax-mp |
|- ( B .ih B ) e. RR |
37 |
36
|
sqrtcli |
|- ( 0 <_ ( B .ih B ) -> ( sqrt ` ( B .ih B ) ) e. RR ) |
38 |
34 37
|
ax-mp |
|- ( sqrt ` ( B .ih B ) ) e. RR |
39 |
32 38
|
remulcli |
|- ( ( sqrt ` ( A .ih A ) ) x. ( sqrt ` ( B .ih B ) ) ) e. RR |
40 |
26 39
|
remulcli |
|- ( 2 x. ( ( sqrt ` ( A .ih A ) ) x. ( sqrt ` ( B .ih B ) ) ) ) e. RR |
41 |
30 36
|
readdcli |
|- ( ( A .ih A ) + ( B .ih B ) ) e. RR |
42 |
25 40 41
|
leadd2i |
|- ( ( ( B .ih A ) + ( A .ih B ) ) <_ ( 2 x. ( ( sqrt ` ( A .ih A ) ) x. ( sqrt ` ( B .ih B ) ) ) ) <-> ( ( ( A .ih A ) + ( B .ih B ) ) + ( ( B .ih A ) + ( A .ih B ) ) ) <_ ( ( ( A .ih A ) + ( B .ih B ) ) + ( 2 x. ( ( sqrt ` ( A .ih A ) ) x. ( sqrt ` ( B .ih B ) ) ) ) ) ) |
43 |
16 42
|
mpbi |
|- ( ( ( A .ih A ) + ( B .ih B ) ) + ( ( B .ih A ) + ( A .ih B ) ) ) <_ ( ( ( A .ih A ) + ( B .ih B ) ) + ( 2 x. ( ( sqrt ` ( A .ih A ) ) x. ( sqrt ` ( B .ih B ) ) ) ) ) |
44 |
1 2 1 2
|
normlem8 |
|- ( ( A +h B ) .ih ( A +h B ) ) = ( ( ( A .ih A ) + ( B .ih B ) ) + ( ( A .ih B ) + ( B .ih A ) ) ) |
45 |
11 8
|
addcomi |
|- ( ( A .ih B ) + ( B .ih A ) ) = ( ( B .ih A ) + ( A .ih B ) ) |
46 |
45
|
oveq2i |
|- ( ( ( A .ih A ) + ( B .ih B ) ) + ( ( A .ih B ) + ( B .ih A ) ) ) = ( ( ( A .ih A ) + ( B .ih B ) ) + ( ( B .ih A ) + ( A .ih B ) ) ) |
47 |
44 46
|
eqtri |
|- ( ( A +h B ) .ih ( A +h B ) ) = ( ( ( A .ih A ) + ( B .ih B ) ) + ( ( B .ih A ) + ( A .ih B ) ) ) |
48 |
32
|
recni |
|- ( sqrt ` ( A .ih A ) ) e. CC |
49 |
38
|
recni |
|- ( sqrt ` ( B .ih B ) ) e. CC |
50 |
48 49
|
binom2i |
|- ( ( ( sqrt ` ( A .ih A ) ) + ( sqrt ` ( B .ih B ) ) ) ^ 2 ) = ( ( ( ( sqrt ` ( A .ih A ) ) ^ 2 ) + ( 2 x. ( ( sqrt ` ( A .ih A ) ) x. ( sqrt ` ( B .ih B ) ) ) ) ) + ( ( sqrt ` ( B .ih B ) ) ^ 2 ) ) |
51 |
48
|
sqcli |
|- ( ( sqrt ` ( A .ih A ) ) ^ 2 ) e. CC |
52 |
|
2cn |
|- 2 e. CC |
53 |
48 49
|
mulcli |
|- ( ( sqrt ` ( A .ih A ) ) x. ( sqrt ` ( B .ih B ) ) ) e. CC |
54 |
52 53
|
mulcli |
|- ( 2 x. ( ( sqrt ` ( A .ih A ) ) x. ( sqrt ` ( B .ih B ) ) ) ) e. CC |
55 |
49
|
sqcli |
|- ( ( sqrt ` ( B .ih B ) ) ^ 2 ) e. CC |
56 |
51 54 55
|
add32i |
|- ( ( ( ( sqrt ` ( A .ih A ) ) ^ 2 ) + ( 2 x. ( ( sqrt ` ( A .ih A ) ) x. ( sqrt ` ( B .ih B ) ) ) ) ) + ( ( sqrt ` ( B .ih B ) ) ^ 2 ) ) = ( ( ( ( sqrt ` ( A .ih A ) ) ^ 2 ) + ( ( sqrt ` ( B .ih B ) ) ^ 2 ) ) + ( 2 x. ( ( sqrt ` ( A .ih A ) ) x. ( sqrt ` ( B .ih B ) ) ) ) ) |
57 |
30
|
sqsqrti |
|- ( 0 <_ ( A .ih A ) -> ( ( sqrt ` ( A .ih A ) ) ^ 2 ) = ( A .ih A ) ) |
58 |
28 57
|
ax-mp |
|- ( ( sqrt ` ( A .ih A ) ) ^ 2 ) = ( A .ih A ) |
59 |
36
|
sqsqrti |
|- ( 0 <_ ( B .ih B ) -> ( ( sqrt ` ( B .ih B ) ) ^ 2 ) = ( B .ih B ) ) |
60 |
34 59
|
ax-mp |
|- ( ( sqrt ` ( B .ih B ) ) ^ 2 ) = ( B .ih B ) |
61 |
58 60
|
oveq12i |
|- ( ( ( sqrt ` ( A .ih A ) ) ^ 2 ) + ( ( sqrt ` ( B .ih B ) ) ^ 2 ) ) = ( ( A .ih A ) + ( B .ih B ) ) |
62 |
61
|
oveq1i |
|- ( ( ( ( sqrt ` ( A .ih A ) ) ^ 2 ) + ( ( sqrt ` ( B .ih B ) ) ^ 2 ) ) + ( 2 x. ( ( sqrt ` ( A .ih A ) ) x. ( sqrt ` ( B .ih B ) ) ) ) ) = ( ( ( A .ih A ) + ( B .ih B ) ) + ( 2 x. ( ( sqrt ` ( A .ih A ) ) x. ( sqrt ` ( B .ih B ) ) ) ) ) |
63 |
50 56 62
|
3eqtri |
|- ( ( ( sqrt ` ( A .ih A ) ) + ( sqrt ` ( B .ih B ) ) ) ^ 2 ) = ( ( ( A .ih A ) + ( B .ih B ) ) + ( 2 x. ( ( sqrt ` ( A .ih A ) ) x. ( sqrt ` ( B .ih B ) ) ) ) ) |
64 |
43 47 63
|
3brtr4i |
|- ( ( A +h B ) .ih ( A +h B ) ) <_ ( ( ( sqrt ` ( A .ih A ) ) + ( sqrt ` ( B .ih B ) ) ) ^ 2 ) |
65 |
1 2
|
hvaddcli |
|- ( A +h B ) e. ~H |
66 |
|
hiidge0 |
|- ( ( A +h B ) e. ~H -> 0 <_ ( ( A +h B ) .ih ( A +h B ) ) ) |
67 |
65 66
|
ax-mp |
|- 0 <_ ( ( A +h B ) .ih ( A +h B ) ) |
68 |
32 38
|
readdcli |
|- ( ( sqrt ` ( A .ih A ) ) + ( sqrt ` ( B .ih B ) ) ) e. RR |
69 |
68
|
sqge0i |
|- 0 <_ ( ( ( sqrt ` ( A .ih A ) ) + ( sqrt ` ( B .ih B ) ) ) ^ 2 ) |
70 |
|
hiidrcl |
|- ( ( A +h B ) e. ~H -> ( ( A +h B ) .ih ( A +h B ) ) e. RR ) |
71 |
65 70
|
ax-mp |
|- ( ( A +h B ) .ih ( A +h B ) ) e. RR |
72 |
68
|
resqcli |
|- ( ( ( sqrt ` ( A .ih A ) ) + ( sqrt ` ( B .ih B ) ) ) ^ 2 ) e. RR |
73 |
71 72
|
sqrtlei |
|- ( ( 0 <_ ( ( A +h B ) .ih ( A +h B ) ) /\ 0 <_ ( ( ( sqrt ` ( A .ih A ) ) + ( sqrt ` ( B .ih B ) ) ) ^ 2 ) ) -> ( ( ( A +h B ) .ih ( A +h B ) ) <_ ( ( ( sqrt ` ( A .ih A ) ) + ( sqrt ` ( B .ih B ) ) ) ^ 2 ) <-> ( sqrt ` ( ( A +h B ) .ih ( A +h B ) ) ) <_ ( sqrt ` ( ( ( sqrt ` ( A .ih A ) ) + ( sqrt ` ( B .ih B ) ) ) ^ 2 ) ) ) ) |
74 |
67 69 73
|
mp2an |
|- ( ( ( A +h B ) .ih ( A +h B ) ) <_ ( ( ( sqrt ` ( A .ih A ) ) + ( sqrt ` ( B .ih B ) ) ) ^ 2 ) <-> ( sqrt ` ( ( A +h B ) .ih ( A +h B ) ) ) <_ ( sqrt ` ( ( ( sqrt ` ( A .ih A ) ) + ( sqrt ` ( B .ih B ) ) ) ^ 2 ) ) ) |
75 |
64 74
|
mpbi |
|- ( sqrt ` ( ( A +h B ) .ih ( A +h B ) ) ) <_ ( sqrt ` ( ( ( sqrt ` ( A .ih A ) ) + ( sqrt ` ( B .ih B ) ) ) ^ 2 ) ) |
76 |
30
|
sqrtge0i |
|- ( 0 <_ ( A .ih A ) -> 0 <_ ( sqrt ` ( A .ih A ) ) ) |
77 |
28 76
|
ax-mp |
|- 0 <_ ( sqrt ` ( A .ih A ) ) |
78 |
36
|
sqrtge0i |
|- ( 0 <_ ( B .ih B ) -> 0 <_ ( sqrt ` ( B .ih B ) ) ) |
79 |
34 78
|
ax-mp |
|- 0 <_ ( sqrt ` ( B .ih B ) ) |
80 |
32 38
|
addge0i |
|- ( ( 0 <_ ( sqrt ` ( A .ih A ) ) /\ 0 <_ ( sqrt ` ( B .ih B ) ) ) -> 0 <_ ( ( sqrt ` ( A .ih A ) ) + ( sqrt ` ( B .ih B ) ) ) ) |
81 |
77 79 80
|
mp2an |
|- 0 <_ ( ( sqrt ` ( A .ih A ) ) + ( sqrt ` ( B .ih B ) ) ) |
82 |
68
|
sqrtsqi |
|- ( 0 <_ ( ( sqrt ` ( A .ih A ) ) + ( sqrt ` ( B .ih B ) ) ) -> ( sqrt ` ( ( ( sqrt ` ( A .ih A ) ) + ( sqrt ` ( B .ih B ) ) ) ^ 2 ) ) = ( ( sqrt ` ( A .ih A ) ) + ( sqrt ` ( B .ih B ) ) ) ) |
83 |
81 82
|
ax-mp |
|- ( sqrt ` ( ( ( sqrt ` ( A .ih A ) ) + ( sqrt ` ( B .ih B ) ) ) ^ 2 ) ) = ( ( sqrt ` ( A .ih A ) ) + ( sqrt ` ( B .ih B ) ) ) |
84 |
75 83
|
breqtri |
|- ( sqrt ` ( ( A +h B ) .ih ( A +h B ) ) ) <_ ( ( sqrt ` ( A .ih A ) ) + ( sqrt ` ( B .ih B ) ) ) |
85 |
|
normval |
|- ( ( A +h B ) e. ~H -> ( normh ` ( A +h B ) ) = ( sqrt ` ( ( A +h B ) .ih ( A +h B ) ) ) ) |
86 |
65 85
|
ax-mp |
|- ( normh ` ( A +h B ) ) = ( sqrt ` ( ( A +h B ) .ih ( A +h B ) ) ) |
87 |
|
normval |
|- ( A e. ~H -> ( normh ` A ) = ( sqrt ` ( A .ih A ) ) ) |
88 |
1 87
|
ax-mp |
|- ( normh ` A ) = ( sqrt ` ( A .ih A ) ) |
89 |
|
normval |
|- ( B e. ~H -> ( normh ` B ) = ( sqrt ` ( B .ih B ) ) ) |
90 |
2 89
|
ax-mp |
|- ( normh ` B ) = ( sqrt ` ( B .ih B ) ) |
91 |
88 90
|
oveq12i |
|- ( ( normh ` A ) + ( normh ` B ) ) = ( ( sqrt ` ( A .ih A ) ) + ( sqrt ` ( B .ih B ) ) ) |
92 |
84 86 91
|
3brtr4i |
|- ( normh ` ( A +h B ) ) <_ ( ( normh ` A ) + ( normh ` B ) ) |