| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fvoveq1 |
|- ( A = if ( A e. CC , A , 0 ) -> ( normh ` ( A .h B ) ) = ( normh ` ( if ( A e. CC , A , 0 ) .h B ) ) ) |
| 2 |
|
fveq2 |
|- ( A = if ( A e. CC , A , 0 ) -> ( abs ` A ) = ( abs ` if ( A e. CC , A , 0 ) ) ) |
| 3 |
2
|
oveq1d |
|- ( A = if ( A e. CC , A , 0 ) -> ( ( abs ` A ) x. ( normh ` B ) ) = ( ( abs ` if ( A e. CC , A , 0 ) ) x. ( normh ` B ) ) ) |
| 4 |
1 3
|
eqeq12d |
|- ( A = if ( A e. CC , A , 0 ) -> ( ( normh ` ( A .h B ) ) = ( ( abs ` A ) x. ( normh ` B ) ) <-> ( normh ` ( if ( A e. CC , A , 0 ) .h B ) ) = ( ( abs ` if ( A e. CC , A , 0 ) ) x. ( normh ` B ) ) ) ) |
| 5 |
|
oveq2 |
|- ( B = if ( B e. ~H , B , 0h ) -> ( if ( A e. CC , A , 0 ) .h B ) = ( if ( A e. CC , A , 0 ) .h if ( B e. ~H , B , 0h ) ) ) |
| 6 |
5
|
fveq2d |
|- ( B = if ( B e. ~H , B , 0h ) -> ( normh ` ( if ( A e. CC , A , 0 ) .h B ) ) = ( normh ` ( if ( A e. CC , A , 0 ) .h if ( B e. ~H , B , 0h ) ) ) ) |
| 7 |
|
fveq2 |
|- ( B = if ( B e. ~H , B , 0h ) -> ( normh ` B ) = ( normh ` if ( B e. ~H , B , 0h ) ) ) |
| 8 |
7
|
oveq2d |
|- ( B = if ( B e. ~H , B , 0h ) -> ( ( abs ` if ( A e. CC , A , 0 ) ) x. ( normh ` B ) ) = ( ( abs ` if ( A e. CC , A , 0 ) ) x. ( normh ` if ( B e. ~H , B , 0h ) ) ) ) |
| 9 |
6 8
|
eqeq12d |
|- ( B = if ( B e. ~H , B , 0h ) -> ( ( normh ` ( if ( A e. CC , A , 0 ) .h B ) ) = ( ( abs ` if ( A e. CC , A , 0 ) ) x. ( normh ` B ) ) <-> ( normh ` ( if ( A e. CC , A , 0 ) .h if ( B e. ~H , B , 0h ) ) ) = ( ( abs ` if ( A e. CC , A , 0 ) ) x. ( normh ` if ( B e. ~H , B , 0h ) ) ) ) ) |
| 10 |
|
0cn |
|- 0 e. CC |
| 11 |
10
|
elimel |
|- if ( A e. CC , A , 0 ) e. CC |
| 12 |
|
ifhvhv0 |
|- if ( B e. ~H , B , 0h ) e. ~H |
| 13 |
11 12
|
norm-iii-i |
|- ( normh ` ( if ( A e. CC , A , 0 ) .h if ( B e. ~H , B , 0h ) ) ) = ( ( abs ` if ( A e. CC , A , 0 ) ) x. ( normh ` if ( B e. ~H , B , 0h ) ) ) |
| 14 |
4 9 13
|
dedth2h |
|- ( ( A e. CC /\ B e. ~H ) -> ( normh ` ( A .h B ) ) = ( ( abs ` A ) x. ( normh ` B ) ) ) |