Step |
Hyp |
Ref |
Expression |
1 |
|
norm-iii.1 |
|- A e. CC |
2 |
|
norm-iii.2 |
|- B e. ~H |
3 |
1 1 2 2
|
his35i |
|- ( ( A .h B ) .ih ( A .h B ) ) = ( ( A x. ( * ` A ) ) x. ( B .ih B ) ) |
4 |
3
|
fveq2i |
|- ( sqrt ` ( ( A .h B ) .ih ( A .h B ) ) ) = ( sqrt ` ( ( A x. ( * ` A ) ) x. ( B .ih B ) ) ) |
5 |
1
|
cjmulrcli |
|- ( A x. ( * ` A ) ) e. RR |
6 |
|
hiidrcl |
|- ( B e. ~H -> ( B .ih B ) e. RR ) |
7 |
2 6
|
ax-mp |
|- ( B .ih B ) e. RR |
8 |
1
|
cjmulge0i |
|- 0 <_ ( A x. ( * ` A ) ) |
9 |
|
hiidge0 |
|- ( B e. ~H -> 0 <_ ( B .ih B ) ) |
10 |
2 9
|
ax-mp |
|- 0 <_ ( B .ih B ) |
11 |
5 7 8 10
|
sqrtmulii |
|- ( sqrt ` ( ( A x. ( * ` A ) ) x. ( B .ih B ) ) ) = ( ( sqrt ` ( A x. ( * ` A ) ) ) x. ( sqrt ` ( B .ih B ) ) ) |
12 |
4 11
|
eqtri |
|- ( sqrt ` ( ( A .h B ) .ih ( A .h B ) ) ) = ( ( sqrt ` ( A x. ( * ` A ) ) ) x. ( sqrt ` ( B .ih B ) ) ) |
13 |
1 2
|
hvmulcli |
|- ( A .h B ) e. ~H |
14 |
|
normval |
|- ( ( A .h B ) e. ~H -> ( normh ` ( A .h B ) ) = ( sqrt ` ( ( A .h B ) .ih ( A .h B ) ) ) ) |
15 |
13 14
|
ax-mp |
|- ( normh ` ( A .h B ) ) = ( sqrt ` ( ( A .h B ) .ih ( A .h B ) ) ) |
16 |
|
absval |
|- ( A e. CC -> ( abs ` A ) = ( sqrt ` ( A x. ( * ` A ) ) ) ) |
17 |
1 16
|
ax-mp |
|- ( abs ` A ) = ( sqrt ` ( A x. ( * ` A ) ) ) |
18 |
|
normval |
|- ( B e. ~H -> ( normh ` B ) = ( sqrt ` ( B .ih B ) ) ) |
19 |
2 18
|
ax-mp |
|- ( normh ` B ) = ( sqrt ` ( B .ih B ) ) |
20 |
17 19
|
oveq12i |
|- ( ( abs ` A ) x. ( normh ` B ) ) = ( ( sqrt ` ( A x. ( * ` A ) ) ) x. ( sqrt ` ( B .ih B ) ) ) |
21 |
12 15 20
|
3eqtr4i |
|- ( normh ` ( A .h B ) ) = ( ( abs ` A ) x. ( normh ` B ) ) |