Description: The norm of a zero vector. (Contributed by NM, 30-May-1999) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | norm0 | |- ( normh ` 0h ) = 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-hv0cl | |- 0h e. ~H |
|
2 | normval | |- ( 0h e. ~H -> ( normh ` 0h ) = ( sqrt ` ( 0h .ih 0h ) ) ) |
|
3 | 1 2 | ax-mp | |- ( normh ` 0h ) = ( sqrt ` ( 0h .ih 0h ) ) |
4 | hi01 | |- ( 0h e. ~H -> ( 0h .ih 0h ) = 0 ) |
|
5 | 4 | fveq2d | |- ( 0h e. ~H -> ( sqrt ` ( 0h .ih 0h ) ) = ( sqrt ` 0 ) ) |
6 | 1 5 | ax-mp | |- ( sqrt ` ( 0h .ih 0h ) ) = ( sqrt ` 0 ) |
7 | sqrt0 | |- ( sqrt ` 0 ) = 0 |
|
8 | 3 6 7 | 3eqtri | |- ( normh ` 0h ) = 0 |