Description: The norm of a zero vector. (Contributed by NM, 30-May-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | norm0 | |- ( normh ` 0h ) = 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-hv0cl | |- 0h e. ~H |
|
| 2 | normval | |- ( 0h e. ~H -> ( normh ` 0h ) = ( sqrt ` ( 0h .ih 0h ) ) ) |
|
| 3 | 1 2 | ax-mp | |- ( normh ` 0h ) = ( sqrt ` ( 0h .ih 0h ) ) |
| 4 | hi01 | |- ( 0h e. ~H -> ( 0h .ih 0h ) = 0 ) |
|
| 5 | 4 | fveq2d | |- ( 0h e. ~H -> ( sqrt ` ( 0h .ih 0h ) ) = ( sqrt ` 0 ) ) |
| 6 | 1 5 | ax-mp | |- ( sqrt ` ( 0h .ih 0h ) ) = ( sqrt ` 0 ) |
| 7 | sqrt0 | |- ( sqrt ` 0 ) = 0 |
|
| 8 | 3 6 7 | 3eqtri | |- ( normh ` 0h ) = 0 |