| Step | Hyp | Ref | Expression | 
						
							| 1 |  | normcl |  |-  ( A e. ~H -> ( normh ` A ) e. RR ) | 
						
							| 2 | 1 | adantr |  |-  ( ( A e. ~H /\ A =/= 0h ) -> ( normh ` A ) e. RR ) | 
						
							| 3 |  | normne0 |  |-  ( A e. ~H -> ( ( normh ` A ) =/= 0 <-> A =/= 0h ) ) | 
						
							| 4 | 3 | biimpar |  |-  ( ( A e. ~H /\ A =/= 0h ) -> ( normh ` A ) =/= 0 ) | 
						
							| 5 | 2 4 | rereccld |  |-  ( ( A e. ~H /\ A =/= 0h ) -> ( 1 / ( normh ` A ) ) e. RR ) | 
						
							| 6 | 5 | recnd |  |-  ( ( A e. ~H /\ A =/= 0h ) -> ( 1 / ( normh ` A ) ) e. CC ) | 
						
							| 7 |  | simpl |  |-  ( ( A e. ~H /\ A =/= 0h ) -> A e. ~H ) | 
						
							| 8 |  | norm-iii |  |-  ( ( ( 1 / ( normh ` A ) ) e. CC /\ A e. ~H ) -> ( normh ` ( ( 1 / ( normh ` A ) ) .h A ) ) = ( ( abs ` ( 1 / ( normh ` A ) ) ) x. ( normh ` A ) ) ) | 
						
							| 9 | 6 7 8 | syl2anc |  |-  ( ( A e. ~H /\ A =/= 0h ) -> ( normh ` ( ( 1 / ( normh ` A ) ) .h A ) ) = ( ( abs ` ( 1 / ( normh ` A ) ) ) x. ( normh ` A ) ) ) | 
						
							| 10 |  | normgt0 |  |-  ( A e. ~H -> ( A =/= 0h <-> 0 < ( normh ` A ) ) ) | 
						
							| 11 | 10 | biimpa |  |-  ( ( A e. ~H /\ A =/= 0h ) -> 0 < ( normh ` A ) ) | 
						
							| 12 |  | 1re |  |-  1 e. RR | 
						
							| 13 |  | 0le1 |  |-  0 <_ 1 | 
						
							| 14 |  | divge0 |  |-  ( ( ( 1 e. RR /\ 0 <_ 1 ) /\ ( ( normh ` A ) e. RR /\ 0 < ( normh ` A ) ) ) -> 0 <_ ( 1 / ( normh ` A ) ) ) | 
						
							| 15 | 12 13 14 | mpanl12 |  |-  ( ( ( normh ` A ) e. RR /\ 0 < ( normh ` A ) ) -> 0 <_ ( 1 / ( normh ` A ) ) ) | 
						
							| 16 | 2 11 15 | syl2anc |  |-  ( ( A e. ~H /\ A =/= 0h ) -> 0 <_ ( 1 / ( normh ` A ) ) ) | 
						
							| 17 | 5 16 | absidd |  |-  ( ( A e. ~H /\ A =/= 0h ) -> ( abs ` ( 1 / ( normh ` A ) ) ) = ( 1 / ( normh ` A ) ) ) | 
						
							| 18 | 17 | oveq1d |  |-  ( ( A e. ~H /\ A =/= 0h ) -> ( ( abs ` ( 1 / ( normh ` A ) ) ) x. ( normh ` A ) ) = ( ( 1 / ( normh ` A ) ) x. ( normh ` A ) ) ) | 
						
							| 19 | 1 | recnd |  |-  ( A e. ~H -> ( normh ` A ) e. CC ) | 
						
							| 20 | 19 | adantr |  |-  ( ( A e. ~H /\ A =/= 0h ) -> ( normh ` A ) e. CC ) | 
						
							| 21 | 20 4 | recid2d |  |-  ( ( A e. ~H /\ A =/= 0h ) -> ( ( 1 / ( normh ` A ) ) x. ( normh ` A ) ) = 1 ) | 
						
							| 22 | 9 18 21 | 3eqtrd |  |-  ( ( A e. ~H /\ A =/= 0h ) -> ( normh ` ( ( 1 / ( normh ` A ) ) .h A ) ) = 1 ) |