| Step | Hyp | Ref | Expression | 
						
							| 1 |  | norm1ex.1 |  |-  H e. SH | 
						
							| 2 |  | neeq1 |  |-  ( x = z -> ( x =/= 0h <-> z =/= 0h ) ) | 
						
							| 3 | 2 | cbvrexvw |  |-  ( E. x e. H x =/= 0h <-> E. z e. H z =/= 0h ) | 
						
							| 4 | 1 | sheli |  |-  ( z e. H -> z e. ~H ) | 
						
							| 5 |  | normcl |  |-  ( z e. ~H -> ( normh ` z ) e. RR ) | 
						
							| 6 | 4 5 | syl |  |-  ( z e. H -> ( normh ` z ) e. RR ) | 
						
							| 7 | 6 | adantr |  |-  ( ( z e. H /\ z =/= 0h ) -> ( normh ` z ) e. RR ) | 
						
							| 8 |  | normne0 |  |-  ( z e. ~H -> ( ( normh ` z ) =/= 0 <-> z =/= 0h ) ) | 
						
							| 9 | 4 8 | syl |  |-  ( z e. H -> ( ( normh ` z ) =/= 0 <-> z =/= 0h ) ) | 
						
							| 10 | 9 | biimpar |  |-  ( ( z e. H /\ z =/= 0h ) -> ( normh ` z ) =/= 0 ) | 
						
							| 11 | 7 10 | rereccld |  |-  ( ( z e. H /\ z =/= 0h ) -> ( 1 / ( normh ` z ) ) e. RR ) | 
						
							| 12 | 11 | recnd |  |-  ( ( z e. H /\ z =/= 0h ) -> ( 1 / ( normh ` z ) ) e. CC ) | 
						
							| 13 |  | simpl |  |-  ( ( z e. H /\ z =/= 0h ) -> z e. H ) | 
						
							| 14 |  | shmulcl |  |-  ( ( H e. SH /\ ( 1 / ( normh ` z ) ) e. CC /\ z e. H ) -> ( ( 1 / ( normh ` z ) ) .h z ) e. H ) | 
						
							| 15 | 1 14 | mp3an1 |  |-  ( ( ( 1 / ( normh ` z ) ) e. CC /\ z e. H ) -> ( ( 1 / ( normh ` z ) ) .h z ) e. H ) | 
						
							| 16 | 12 13 15 | syl2anc |  |-  ( ( z e. H /\ z =/= 0h ) -> ( ( 1 / ( normh ` z ) ) .h z ) e. H ) | 
						
							| 17 |  | norm1 |  |-  ( ( z e. ~H /\ z =/= 0h ) -> ( normh ` ( ( 1 / ( normh ` z ) ) .h z ) ) = 1 ) | 
						
							| 18 | 4 17 | sylan |  |-  ( ( z e. H /\ z =/= 0h ) -> ( normh ` ( ( 1 / ( normh ` z ) ) .h z ) ) = 1 ) | 
						
							| 19 |  | fveqeq2 |  |-  ( y = ( ( 1 / ( normh ` z ) ) .h z ) -> ( ( normh ` y ) = 1 <-> ( normh ` ( ( 1 / ( normh ` z ) ) .h z ) ) = 1 ) ) | 
						
							| 20 | 19 | rspcev |  |-  ( ( ( ( 1 / ( normh ` z ) ) .h z ) e. H /\ ( normh ` ( ( 1 / ( normh ` z ) ) .h z ) ) = 1 ) -> E. y e. H ( normh ` y ) = 1 ) | 
						
							| 21 | 16 18 20 | syl2anc |  |-  ( ( z e. H /\ z =/= 0h ) -> E. y e. H ( normh ` y ) = 1 ) | 
						
							| 22 | 21 | rexlimiva |  |-  ( E. z e. H z =/= 0h -> E. y e. H ( normh ` y ) = 1 ) | 
						
							| 23 |  | ax-1ne0 |  |-  1 =/= 0 | 
						
							| 24 | 23 | neii |  |-  -. 1 = 0 | 
						
							| 25 |  | eqeq1 |  |-  ( ( normh ` y ) = 1 -> ( ( normh ` y ) = 0 <-> 1 = 0 ) ) | 
						
							| 26 | 24 25 | mtbiri |  |-  ( ( normh ` y ) = 1 -> -. ( normh ` y ) = 0 ) | 
						
							| 27 | 1 | sheli |  |-  ( y e. H -> y e. ~H ) | 
						
							| 28 |  | norm-i |  |-  ( y e. ~H -> ( ( normh ` y ) = 0 <-> y = 0h ) ) | 
						
							| 29 | 27 28 | syl |  |-  ( y e. H -> ( ( normh ` y ) = 0 <-> y = 0h ) ) | 
						
							| 30 | 29 | necon3bbid |  |-  ( y e. H -> ( -. ( normh ` y ) = 0 <-> y =/= 0h ) ) | 
						
							| 31 | 26 30 | imbitrid |  |-  ( y e. H -> ( ( normh ` y ) = 1 -> y =/= 0h ) ) | 
						
							| 32 | 31 | reximia |  |-  ( E. y e. H ( normh ` y ) = 1 -> E. y e. H y =/= 0h ) | 
						
							| 33 |  | neeq1 |  |-  ( y = z -> ( y =/= 0h <-> z =/= 0h ) ) | 
						
							| 34 | 33 | cbvrexvw |  |-  ( E. y e. H y =/= 0h <-> E. z e. H z =/= 0h ) | 
						
							| 35 | 32 34 | sylib |  |-  ( E. y e. H ( normh ` y ) = 1 -> E. z e. H z =/= 0h ) | 
						
							| 36 | 22 35 | impbii |  |-  ( E. z e. H z =/= 0h <-> E. y e. H ( normh ` y ) = 1 ) | 
						
							| 37 | 3 36 | bitri |  |-  ( E. x e. H x =/= 0h <-> E. y e. H ( normh ` y ) = 1 ) |