Metamath Proof Explorer


Theorem norm1hex

Description: A normalized vector can exist only iff the Hilbert space has a nonzero vector. (Contributed by NM, 21-Jan-2006) (New usage is discouraged.)

Ref Expression
Assertion norm1hex
|- ( E. x e. ~H x =/= 0h <-> E. y e. ~H ( normh ` y ) = 1 )

Proof

Step Hyp Ref Expression
1 helsh
 |-  ~H e. SH
2 1 norm1exi
 |-  ( E. x e. ~H x =/= 0h <-> E. y e. ~H ( normh ` y ) = 1 )