| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							norm3adift.1 | 
							 |-  C e. ~H  | 
						
						
							| 2 | 
							
								
							 | 
							fvoveq1 | 
							 |-  ( A = if ( A e. ~H , A , 0h ) -> ( normh ` ( A -h C ) ) = ( normh ` ( if ( A e. ~H , A , 0h ) -h C ) ) )  | 
						
						
							| 3 | 
							
								2
							 | 
							fvoveq1d | 
							 |-  ( A = if ( A e. ~H , A , 0h ) -> ( abs ` ( ( normh ` ( A -h C ) ) - ( normh ` ( B -h C ) ) ) ) = ( abs ` ( ( normh ` ( if ( A e. ~H , A , 0h ) -h C ) ) - ( normh ` ( B -h C ) ) ) ) )  | 
						
						
							| 4 | 
							
								
							 | 
							fvoveq1 | 
							 |-  ( A = if ( A e. ~H , A , 0h ) -> ( normh ` ( A -h B ) ) = ( normh ` ( if ( A e. ~H , A , 0h ) -h B ) ) )  | 
						
						
							| 5 | 
							
								3 4
							 | 
							breq12d | 
							 |-  ( A = if ( A e. ~H , A , 0h ) -> ( ( abs ` ( ( normh ` ( A -h C ) ) - ( normh ` ( B -h C ) ) ) ) <_ ( normh ` ( A -h B ) ) <-> ( abs ` ( ( normh ` ( if ( A e. ~H , A , 0h ) -h C ) ) - ( normh ` ( B -h C ) ) ) ) <_ ( normh ` ( if ( A e. ~H , A , 0h ) -h B ) ) ) )  | 
						
						
							| 6 | 
							
								
							 | 
							fvoveq1 | 
							 |-  ( B = if ( B e. ~H , B , 0h ) -> ( normh ` ( B -h C ) ) = ( normh ` ( if ( B e. ~H , B , 0h ) -h C ) ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							oveq2d | 
							 |-  ( B = if ( B e. ~H , B , 0h ) -> ( ( normh ` ( if ( A e. ~H , A , 0h ) -h C ) ) - ( normh ` ( B -h C ) ) ) = ( ( normh ` ( if ( A e. ~H , A , 0h ) -h C ) ) - ( normh ` ( if ( B e. ~H , B , 0h ) -h C ) ) ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							fveq2d | 
							 |-  ( B = if ( B e. ~H , B , 0h ) -> ( abs ` ( ( normh ` ( if ( A e. ~H , A , 0h ) -h C ) ) - ( normh ` ( B -h C ) ) ) ) = ( abs ` ( ( normh ` ( if ( A e. ~H , A , 0h ) -h C ) ) - ( normh ` ( if ( B e. ~H , B , 0h ) -h C ) ) ) ) )  | 
						
						
							| 9 | 
							
								
							 | 
							oveq2 | 
							 |-  ( B = if ( B e. ~H , B , 0h ) -> ( if ( A e. ~H , A , 0h ) -h B ) = ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							fveq2d | 
							 |-  ( B = if ( B e. ~H , B , 0h ) -> ( normh ` ( if ( A e. ~H , A , 0h ) -h B ) ) = ( normh ` ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) ) )  | 
						
						
							| 11 | 
							
								8 10
							 | 
							breq12d | 
							 |-  ( B = if ( B e. ~H , B , 0h ) -> ( ( abs ` ( ( normh ` ( if ( A e. ~H , A , 0h ) -h C ) ) - ( normh ` ( B -h C ) ) ) ) <_ ( normh ` ( if ( A e. ~H , A , 0h ) -h B ) ) <-> ( abs ` ( ( normh ` ( if ( A e. ~H , A , 0h ) -h C ) ) - ( normh ` ( if ( B e. ~H , B , 0h ) -h C ) ) ) ) <_ ( normh ` ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) ) ) )  | 
						
						
							| 12 | 
							
								
							 | 
							ifhvhv0 | 
							 |-  if ( A e. ~H , A , 0h ) e. ~H  | 
						
						
							| 13 | 
							
								
							 | 
							ifhvhv0 | 
							 |-  if ( B e. ~H , B , 0h ) e. ~H  | 
						
						
							| 14 | 
							
								12 13 1
							 | 
							norm3adifii | 
							 |-  ( abs ` ( ( normh ` ( if ( A e. ~H , A , 0h ) -h C ) ) - ( normh ` ( if ( B e. ~H , B , 0h ) -h C ) ) ) ) <_ ( normh ` ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) )  | 
						
						
							| 15 | 
							
								5 11 14
							 | 
							dedth2h | 
							 |-  ( ( A e. ~H /\ B e. ~H ) -> ( abs ` ( ( normh ` ( A -h C ) ) - ( normh ` ( B -h C ) ) ) ) <_ ( normh ` ( A -h B ) ) )  |