| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							norm3dif | 
							 |-  ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( normh ` ( A -h B ) ) <_ ( ( normh ` ( A -h C ) ) + ( normh ` ( C -h B ) ) ) )  | 
						
						
							| 2 | 
							
								
							 | 
							normsub | 
							 |-  ( ( A e. ~H /\ C e. ~H ) -> ( normh ` ( A -h C ) ) = ( normh ` ( C -h A ) ) )  | 
						
						
							| 3 | 
							
								2
							 | 
							3adant2 | 
							 |-  ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( normh ` ( A -h C ) ) = ( normh ` ( C -h A ) ) )  | 
						
						
							| 4 | 
							
								3
							 | 
							oveq1d | 
							 |-  ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( ( normh ` ( A -h C ) ) + ( normh ` ( C -h B ) ) ) = ( ( normh ` ( C -h A ) ) + ( normh ` ( C -h B ) ) ) )  | 
						
						
							| 5 | 
							
								1 4
							 | 
							breqtrd | 
							 |-  ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( normh ` ( A -h B ) ) <_ ( ( normh ` ( C -h A ) ) + ( normh ` ( C -h B ) ) ) )  |