Step |
Hyp |
Ref |
Expression |
1 |
|
norm3dif |
|- ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( normh ` ( A -h B ) ) <_ ( ( normh ` ( A -h C ) ) + ( normh ` ( C -h B ) ) ) ) |
2 |
|
normsub |
|- ( ( A e. ~H /\ C e. ~H ) -> ( normh ` ( A -h C ) ) = ( normh ` ( C -h A ) ) ) |
3 |
2
|
3adant2 |
|- ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( normh ` ( A -h C ) ) = ( normh ` ( C -h A ) ) ) |
4 |
3
|
oveq1d |
|- ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( ( normh ` ( A -h C ) ) + ( normh ` ( C -h B ) ) ) = ( ( normh ` ( C -h A ) ) + ( normh ` ( C -h B ) ) ) ) |
5 |
1 4
|
breqtrd |
|- ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( normh ` ( A -h B ) ) <_ ( ( normh ` ( C -h A ) ) + ( normh ` ( C -h B ) ) ) ) |