| Step | Hyp | Ref | Expression | 
						
							| 1 |  | norm3dif.1 |  |-  A e. ~H | 
						
							| 2 |  | norm3dif.2 |  |-  B e. ~H | 
						
							| 3 |  | norm3dif.3 |  |-  C e. ~H | 
						
							| 4 | 1 2 | hvsubvali |  |-  ( A -h B ) = ( A +h ( -u 1 .h B ) ) | 
						
							| 5 | 1 3 | hvsubvali |  |-  ( A -h C ) = ( A +h ( -u 1 .h C ) ) | 
						
							| 6 | 3 2 | hvsubvali |  |-  ( C -h B ) = ( C +h ( -u 1 .h B ) ) | 
						
							| 7 | 5 6 | oveq12i |  |-  ( ( A -h C ) +h ( C -h B ) ) = ( ( A +h ( -u 1 .h C ) ) +h ( C +h ( -u 1 .h B ) ) ) | 
						
							| 8 |  | neg1cn |  |-  -u 1 e. CC | 
						
							| 9 | 8 3 | hvmulcli |  |-  ( -u 1 .h C ) e. ~H | 
						
							| 10 | 8 2 | hvmulcli |  |-  ( -u 1 .h B ) e. ~H | 
						
							| 11 | 3 10 | hvaddcli |  |-  ( C +h ( -u 1 .h B ) ) e. ~H | 
						
							| 12 | 1 9 11 | hvassi |  |-  ( ( A +h ( -u 1 .h C ) ) +h ( C +h ( -u 1 .h B ) ) ) = ( A +h ( ( -u 1 .h C ) +h ( C +h ( -u 1 .h B ) ) ) ) | 
						
							| 13 | 9 3 10 | hvassi |  |-  ( ( ( -u 1 .h C ) +h C ) +h ( -u 1 .h B ) ) = ( ( -u 1 .h C ) +h ( C +h ( -u 1 .h B ) ) ) | 
						
							| 14 | 9 3 | hvcomi |  |-  ( ( -u 1 .h C ) +h C ) = ( C +h ( -u 1 .h C ) ) | 
						
							| 15 | 3 3 | hvsubvali |  |-  ( C -h C ) = ( C +h ( -u 1 .h C ) ) | 
						
							| 16 |  | hvsubid |  |-  ( C e. ~H -> ( C -h C ) = 0h ) | 
						
							| 17 | 3 16 | ax-mp |  |-  ( C -h C ) = 0h | 
						
							| 18 | 14 15 17 | 3eqtr2i |  |-  ( ( -u 1 .h C ) +h C ) = 0h | 
						
							| 19 | 18 | oveq1i |  |-  ( ( ( -u 1 .h C ) +h C ) +h ( -u 1 .h B ) ) = ( 0h +h ( -u 1 .h B ) ) | 
						
							| 20 |  | ax-hv0cl |  |-  0h e. ~H | 
						
							| 21 | 20 10 | hvcomi |  |-  ( 0h +h ( -u 1 .h B ) ) = ( ( -u 1 .h B ) +h 0h ) | 
						
							| 22 |  | ax-hvaddid |  |-  ( ( -u 1 .h B ) e. ~H -> ( ( -u 1 .h B ) +h 0h ) = ( -u 1 .h B ) ) | 
						
							| 23 | 10 22 | ax-mp |  |-  ( ( -u 1 .h B ) +h 0h ) = ( -u 1 .h B ) | 
						
							| 24 | 19 21 23 | 3eqtri |  |-  ( ( ( -u 1 .h C ) +h C ) +h ( -u 1 .h B ) ) = ( -u 1 .h B ) | 
						
							| 25 | 13 24 | eqtr3i |  |-  ( ( -u 1 .h C ) +h ( C +h ( -u 1 .h B ) ) ) = ( -u 1 .h B ) | 
						
							| 26 | 25 | oveq2i |  |-  ( A +h ( ( -u 1 .h C ) +h ( C +h ( -u 1 .h B ) ) ) ) = ( A +h ( -u 1 .h B ) ) | 
						
							| 27 | 7 12 26 | 3eqtri |  |-  ( ( A -h C ) +h ( C -h B ) ) = ( A +h ( -u 1 .h B ) ) | 
						
							| 28 | 4 27 | eqtr4i |  |-  ( A -h B ) = ( ( A -h C ) +h ( C -h B ) ) | 
						
							| 29 | 28 | fveq2i |  |-  ( normh ` ( A -h B ) ) = ( normh ` ( ( A -h C ) +h ( C -h B ) ) ) | 
						
							| 30 | 1 3 | hvsubcli |  |-  ( A -h C ) e. ~H | 
						
							| 31 | 3 2 | hvsubcli |  |-  ( C -h B ) e. ~H | 
						
							| 32 | 30 31 | norm-ii-i |  |-  ( normh ` ( ( A -h C ) +h ( C -h B ) ) ) <_ ( ( normh ` ( A -h C ) ) + ( normh ` ( C -h B ) ) ) | 
						
							| 33 | 29 32 | eqbrtri |  |-  ( normh ` ( A -h B ) ) <_ ( ( normh ` ( A -h C ) ) + ( normh ` ( C -h B ) ) ) |