Step |
Hyp |
Ref |
Expression |
1 |
|
fvoveq1 |
|- ( A = if ( A e. ~H , A , 0h ) -> ( normh ` ( A -h C ) ) = ( normh ` ( if ( A e. ~H , A , 0h ) -h C ) ) ) |
2 |
1
|
breq1d |
|- ( A = if ( A e. ~H , A , 0h ) -> ( ( normh ` ( A -h C ) ) < ( D / 2 ) <-> ( normh ` ( if ( A e. ~H , A , 0h ) -h C ) ) < ( D / 2 ) ) ) |
3 |
2
|
anbi1d |
|- ( A = if ( A e. ~H , A , 0h ) -> ( ( ( normh ` ( A -h C ) ) < ( D / 2 ) /\ ( normh ` ( C -h B ) ) < ( D / 2 ) ) <-> ( ( normh ` ( if ( A e. ~H , A , 0h ) -h C ) ) < ( D / 2 ) /\ ( normh ` ( C -h B ) ) < ( D / 2 ) ) ) ) |
4 |
|
fvoveq1 |
|- ( A = if ( A e. ~H , A , 0h ) -> ( normh ` ( A -h B ) ) = ( normh ` ( if ( A e. ~H , A , 0h ) -h B ) ) ) |
5 |
4
|
breq1d |
|- ( A = if ( A e. ~H , A , 0h ) -> ( ( normh ` ( A -h B ) ) < D <-> ( normh ` ( if ( A e. ~H , A , 0h ) -h B ) ) < D ) ) |
6 |
3 5
|
imbi12d |
|- ( A = if ( A e. ~H , A , 0h ) -> ( ( ( ( normh ` ( A -h C ) ) < ( D / 2 ) /\ ( normh ` ( C -h B ) ) < ( D / 2 ) ) -> ( normh ` ( A -h B ) ) < D ) <-> ( ( ( normh ` ( if ( A e. ~H , A , 0h ) -h C ) ) < ( D / 2 ) /\ ( normh ` ( C -h B ) ) < ( D / 2 ) ) -> ( normh ` ( if ( A e. ~H , A , 0h ) -h B ) ) < D ) ) ) |
7 |
|
oveq2 |
|- ( B = if ( B e. ~H , B , 0h ) -> ( C -h B ) = ( C -h if ( B e. ~H , B , 0h ) ) ) |
8 |
7
|
fveq2d |
|- ( B = if ( B e. ~H , B , 0h ) -> ( normh ` ( C -h B ) ) = ( normh ` ( C -h if ( B e. ~H , B , 0h ) ) ) ) |
9 |
8
|
breq1d |
|- ( B = if ( B e. ~H , B , 0h ) -> ( ( normh ` ( C -h B ) ) < ( D / 2 ) <-> ( normh ` ( C -h if ( B e. ~H , B , 0h ) ) ) < ( D / 2 ) ) ) |
10 |
9
|
anbi2d |
|- ( B = if ( B e. ~H , B , 0h ) -> ( ( ( normh ` ( if ( A e. ~H , A , 0h ) -h C ) ) < ( D / 2 ) /\ ( normh ` ( C -h B ) ) < ( D / 2 ) ) <-> ( ( normh ` ( if ( A e. ~H , A , 0h ) -h C ) ) < ( D / 2 ) /\ ( normh ` ( C -h if ( B e. ~H , B , 0h ) ) ) < ( D / 2 ) ) ) ) |
11 |
|
oveq2 |
|- ( B = if ( B e. ~H , B , 0h ) -> ( if ( A e. ~H , A , 0h ) -h B ) = ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) ) |
12 |
11
|
fveq2d |
|- ( B = if ( B e. ~H , B , 0h ) -> ( normh ` ( if ( A e. ~H , A , 0h ) -h B ) ) = ( normh ` ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) ) ) |
13 |
12
|
breq1d |
|- ( B = if ( B e. ~H , B , 0h ) -> ( ( normh ` ( if ( A e. ~H , A , 0h ) -h B ) ) < D <-> ( normh ` ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) ) < D ) ) |
14 |
10 13
|
imbi12d |
|- ( B = if ( B e. ~H , B , 0h ) -> ( ( ( ( normh ` ( if ( A e. ~H , A , 0h ) -h C ) ) < ( D / 2 ) /\ ( normh ` ( C -h B ) ) < ( D / 2 ) ) -> ( normh ` ( if ( A e. ~H , A , 0h ) -h B ) ) < D ) <-> ( ( ( normh ` ( if ( A e. ~H , A , 0h ) -h C ) ) < ( D / 2 ) /\ ( normh ` ( C -h if ( B e. ~H , B , 0h ) ) ) < ( D / 2 ) ) -> ( normh ` ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) ) < D ) ) ) |
15 |
|
oveq2 |
|- ( C = if ( C e. ~H , C , 0h ) -> ( if ( A e. ~H , A , 0h ) -h C ) = ( if ( A e. ~H , A , 0h ) -h if ( C e. ~H , C , 0h ) ) ) |
16 |
15
|
fveq2d |
|- ( C = if ( C e. ~H , C , 0h ) -> ( normh ` ( if ( A e. ~H , A , 0h ) -h C ) ) = ( normh ` ( if ( A e. ~H , A , 0h ) -h if ( C e. ~H , C , 0h ) ) ) ) |
17 |
16
|
breq1d |
|- ( C = if ( C e. ~H , C , 0h ) -> ( ( normh ` ( if ( A e. ~H , A , 0h ) -h C ) ) < ( D / 2 ) <-> ( normh ` ( if ( A e. ~H , A , 0h ) -h if ( C e. ~H , C , 0h ) ) ) < ( D / 2 ) ) ) |
18 |
|
fvoveq1 |
|- ( C = if ( C e. ~H , C , 0h ) -> ( normh ` ( C -h if ( B e. ~H , B , 0h ) ) ) = ( normh ` ( if ( C e. ~H , C , 0h ) -h if ( B e. ~H , B , 0h ) ) ) ) |
19 |
18
|
breq1d |
|- ( C = if ( C e. ~H , C , 0h ) -> ( ( normh ` ( C -h if ( B e. ~H , B , 0h ) ) ) < ( D / 2 ) <-> ( normh ` ( if ( C e. ~H , C , 0h ) -h if ( B e. ~H , B , 0h ) ) ) < ( D / 2 ) ) ) |
20 |
17 19
|
anbi12d |
|- ( C = if ( C e. ~H , C , 0h ) -> ( ( ( normh ` ( if ( A e. ~H , A , 0h ) -h C ) ) < ( D / 2 ) /\ ( normh ` ( C -h if ( B e. ~H , B , 0h ) ) ) < ( D / 2 ) ) <-> ( ( normh ` ( if ( A e. ~H , A , 0h ) -h if ( C e. ~H , C , 0h ) ) ) < ( D / 2 ) /\ ( normh ` ( if ( C e. ~H , C , 0h ) -h if ( B e. ~H , B , 0h ) ) ) < ( D / 2 ) ) ) ) |
21 |
20
|
imbi1d |
|- ( C = if ( C e. ~H , C , 0h ) -> ( ( ( ( normh ` ( if ( A e. ~H , A , 0h ) -h C ) ) < ( D / 2 ) /\ ( normh ` ( C -h if ( B e. ~H , B , 0h ) ) ) < ( D / 2 ) ) -> ( normh ` ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) ) < D ) <-> ( ( ( normh ` ( if ( A e. ~H , A , 0h ) -h if ( C e. ~H , C , 0h ) ) ) < ( D / 2 ) /\ ( normh ` ( if ( C e. ~H , C , 0h ) -h if ( B e. ~H , B , 0h ) ) ) < ( D / 2 ) ) -> ( normh ` ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) ) < D ) ) ) |
22 |
|
oveq1 |
|- ( D = if ( D e. RR , D , 2 ) -> ( D / 2 ) = ( if ( D e. RR , D , 2 ) / 2 ) ) |
23 |
22
|
breq2d |
|- ( D = if ( D e. RR , D , 2 ) -> ( ( normh ` ( if ( A e. ~H , A , 0h ) -h if ( C e. ~H , C , 0h ) ) ) < ( D / 2 ) <-> ( normh ` ( if ( A e. ~H , A , 0h ) -h if ( C e. ~H , C , 0h ) ) ) < ( if ( D e. RR , D , 2 ) / 2 ) ) ) |
24 |
22
|
breq2d |
|- ( D = if ( D e. RR , D , 2 ) -> ( ( normh ` ( if ( C e. ~H , C , 0h ) -h if ( B e. ~H , B , 0h ) ) ) < ( D / 2 ) <-> ( normh ` ( if ( C e. ~H , C , 0h ) -h if ( B e. ~H , B , 0h ) ) ) < ( if ( D e. RR , D , 2 ) / 2 ) ) ) |
25 |
23 24
|
anbi12d |
|- ( D = if ( D e. RR , D , 2 ) -> ( ( ( normh ` ( if ( A e. ~H , A , 0h ) -h if ( C e. ~H , C , 0h ) ) ) < ( D / 2 ) /\ ( normh ` ( if ( C e. ~H , C , 0h ) -h if ( B e. ~H , B , 0h ) ) ) < ( D / 2 ) ) <-> ( ( normh ` ( if ( A e. ~H , A , 0h ) -h if ( C e. ~H , C , 0h ) ) ) < ( if ( D e. RR , D , 2 ) / 2 ) /\ ( normh ` ( if ( C e. ~H , C , 0h ) -h if ( B e. ~H , B , 0h ) ) ) < ( if ( D e. RR , D , 2 ) / 2 ) ) ) ) |
26 |
|
breq2 |
|- ( D = if ( D e. RR , D , 2 ) -> ( ( normh ` ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) ) < D <-> ( normh ` ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) ) < if ( D e. RR , D , 2 ) ) ) |
27 |
25 26
|
imbi12d |
|- ( D = if ( D e. RR , D , 2 ) -> ( ( ( ( normh ` ( if ( A e. ~H , A , 0h ) -h if ( C e. ~H , C , 0h ) ) ) < ( D / 2 ) /\ ( normh ` ( if ( C e. ~H , C , 0h ) -h if ( B e. ~H , B , 0h ) ) ) < ( D / 2 ) ) -> ( normh ` ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) ) < D ) <-> ( ( ( normh ` ( if ( A e. ~H , A , 0h ) -h if ( C e. ~H , C , 0h ) ) ) < ( if ( D e. RR , D , 2 ) / 2 ) /\ ( normh ` ( if ( C e. ~H , C , 0h ) -h if ( B e. ~H , B , 0h ) ) ) < ( if ( D e. RR , D , 2 ) / 2 ) ) -> ( normh ` ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) ) < if ( D e. RR , D , 2 ) ) ) ) |
28 |
|
ifhvhv0 |
|- if ( A e. ~H , A , 0h ) e. ~H |
29 |
|
ifhvhv0 |
|- if ( B e. ~H , B , 0h ) e. ~H |
30 |
|
ifhvhv0 |
|- if ( C e. ~H , C , 0h ) e. ~H |
31 |
|
2re |
|- 2 e. RR |
32 |
31
|
elimel |
|- if ( D e. RR , D , 2 ) e. RR |
33 |
28 29 30 32
|
norm3lem |
|- ( ( ( normh ` ( if ( A e. ~H , A , 0h ) -h if ( C e. ~H , C , 0h ) ) ) < ( if ( D e. RR , D , 2 ) / 2 ) /\ ( normh ` ( if ( C e. ~H , C , 0h ) -h if ( B e. ~H , B , 0h ) ) ) < ( if ( D e. RR , D , 2 ) / 2 ) ) -> ( normh ` ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) ) < if ( D e. RR , D , 2 ) ) |
34 |
6 14 21 27 33
|
dedth4h |
|- ( ( ( A e. ~H /\ B e. ~H ) /\ ( C e. ~H /\ D e. RR ) ) -> ( ( ( normh ` ( A -h C ) ) < ( D / 2 ) /\ ( normh ` ( C -h B ) ) < ( D / 2 ) ) -> ( normh ` ( A -h B ) ) < D ) ) |