| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							fvoveq1 | 
							 |-  ( A = if ( A e. ~H , A , 0h ) -> ( normh ` ( A -h C ) ) = ( normh ` ( if ( A e. ~H , A , 0h ) -h C ) ) )  | 
						
						
							| 2 | 
							
								1
							 | 
							breq1d | 
							 |-  ( A = if ( A e. ~H , A , 0h ) -> ( ( normh ` ( A -h C ) ) < ( D / 2 ) <-> ( normh ` ( if ( A e. ~H , A , 0h ) -h C ) ) < ( D / 2 ) ) )  | 
						
						
							| 3 | 
							
								2
							 | 
							anbi1d | 
							 |-  ( A = if ( A e. ~H , A , 0h ) -> ( ( ( normh ` ( A -h C ) ) < ( D / 2 ) /\ ( normh ` ( C -h B ) ) < ( D / 2 ) ) <-> ( ( normh ` ( if ( A e. ~H , A , 0h ) -h C ) ) < ( D / 2 ) /\ ( normh ` ( C -h B ) ) < ( D / 2 ) ) ) )  | 
						
						
							| 4 | 
							
								
							 | 
							fvoveq1 | 
							 |-  ( A = if ( A e. ~H , A , 0h ) -> ( normh ` ( A -h B ) ) = ( normh ` ( if ( A e. ~H , A , 0h ) -h B ) ) )  | 
						
						
							| 5 | 
							
								4
							 | 
							breq1d | 
							 |-  ( A = if ( A e. ~H , A , 0h ) -> ( ( normh ` ( A -h B ) ) < D <-> ( normh ` ( if ( A e. ~H , A , 0h ) -h B ) ) < D ) )  | 
						
						
							| 6 | 
							
								3 5
							 | 
							imbi12d | 
							 |-  ( A = if ( A e. ~H , A , 0h ) -> ( ( ( ( normh ` ( A -h C ) ) < ( D / 2 ) /\ ( normh ` ( C -h B ) ) < ( D / 2 ) ) -> ( normh ` ( A -h B ) ) < D ) <-> ( ( ( normh ` ( if ( A e. ~H , A , 0h ) -h C ) ) < ( D / 2 ) /\ ( normh ` ( C -h B ) ) < ( D / 2 ) ) -> ( normh ` ( if ( A e. ~H , A , 0h ) -h B ) ) < D ) ) )  | 
						
						
							| 7 | 
							
								
							 | 
							oveq2 | 
							 |-  ( B = if ( B e. ~H , B , 0h ) -> ( C -h B ) = ( C -h if ( B e. ~H , B , 0h ) ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							fveq2d | 
							 |-  ( B = if ( B e. ~H , B , 0h ) -> ( normh ` ( C -h B ) ) = ( normh ` ( C -h if ( B e. ~H , B , 0h ) ) ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							breq1d | 
							 |-  ( B = if ( B e. ~H , B , 0h ) -> ( ( normh ` ( C -h B ) ) < ( D / 2 ) <-> ( normh ` ( C -h if ( B e. ~H , B , 0h ) ) ) < ( D / 2 ) ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							anbi2d | 
							 |-  ( B = if ( B e. ~H , B , 0h ) -> ( ( ( normh ` ( if ( A e. ~H , A , 0h ) -h C ) ) < ( D / 2 ) /\ ( normh ` ( C -h B ) ) < ( D / 2 ) ) <-> ( ( normh ` ( if ( A e. ~H , A , 0h ) -h C ) ) < ( D / 2 ) /\ ( normh ` ( C -h if ( B e. ~H , B , 0h ) ) ) < ( D / 2 ) ) ) )  | 
						
						
							| 11 | 
							
								
							 | 
							oveq2 | 
							 |-  ( B = if ( B e. ~H , B , 0h ) -> ( if ( A e. ~H , A , 0h ) -h B ) = ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							fveq2d | 
							 |-  ( B = if ( B e. ~H , B , 0h ) -> ( normh ` ( if ( A e. ~H , A , 0h ) -h B ) ) = ( normh ` ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							breq1d | 
							 |-  ( B = if ( B e. ~H , B , 0h ) -> ( ( normh ` ( if ( A e. ~H , A , 0h ) -h B ) ) < D <-> ( normh ` ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) ) < D ) )  | 
						
						
							| 14 | 
							
								10 13
							 | 
							imbi12d | 
							 |-  ( B = if ( B e. ~H , B , 0h ) -> ( ( ( ( normh ` ( if ( A e. ~H , A , 0h ) -h C ) ) < ( D / 2 ) /\ ( normh ` ( C -h B ) ) < ( D / 2 ) ) -> ( normh ` ( if ( A e. ~H , A , 0h ) -h B ) ) < D ) <-> ( ( ( normh ` ( if ( A e. ~H , A , 0h ) -h C ) ) < ( D / 2 ) /\ ( normh ` ( C -h if ( B e. ~H , B , 0h ) ) ) < ( D / 2 ) ) -> ( normh ` ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) ) < D ) ) )  | 
						
						
							| 15 | 
							
								
							 | 
							oveq2 | 
							 |-  ( C = if ( C e. ~H , C , 0h ) -> ( if ( A e. ~H , A , 0h ) -h C ) = ( if ( A e. ~H , A , 0h ) -h if ( C e. ~H , C , 0h ) ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							fveq2d | 
							 |-  ( C = if ( C e. ~H , C , 0h ) -> ( normh ` ( if ( A e. ~H , A , 0h ) -h C ) ) = ( normh ` ( if ( A e. ~H , A , 0h ) -h if ( C e. ~H , C , 0h ) ) ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							breq1d | 
							 |-  ( C = if ( C e. ~H , C , 0h ) -> ( ( normh ` ( if ( A e. ~H , A , 0h ) -h C ) ) < ( D / 2 ) <-> ( normh ` ( if ( A e. ~H , A , 0h ) -h if ( C e. ~H , C , 0h ) ) ) < ( D / 2 ) ) )  | 
						
						
							| 18 | 
							
								
							 | 
							fvoveq1 | 
							 |-  ( C = if ( C e. ~H , C , 0h ) -> ( normh ` ( C -h if ( B e. ~H , B , 0h ) ) ) = ( normh ` ( if ( C e. ~H , C , 0h ) -h if ( B e. ~H , B , 0h ) ) ) )  | 
						
						
							| 19 | 
							
								18
							 | 
							breq1d | 
							 |-  ( C = if ( C e. ~H , C , 0h ) -> ( ( normh ` ( C -h if ( B e. ~H , B , 0h ) ) ) < ( D / 2 ) <-> ( normh ` ( if ( C e. ~H , C , 0h ) -h if ( B e. ~H , B , 0h ) ) ) < ( D / 2 ) ) )  | 
						
						
							| 20 | 
							
								17 19
							 | 
							anbi12d | 
							 |-  ( C = if ( C e. ~H , C , 0h ) -> ( ( ( normh ` ( if ( A e. ~H , A , 0h ) -h C ) ) < ( D / 2 ) /\ ( normh ` ( C -h if ( B e. ~H , B , 0h ) ) ) < ( D / 2 ) ) <-> ( ( normh ` ( if ( A e. ~H , A , 0h ) -h if ( C e. ~H , C , 0h ) ) ) < ( D / 2 ) /\ ( normh ` ( if ( C e. ~H , C , 0h ) -h if ( B e. ~H , B , 0h ) ) ) < ( D / 2 ) ) ) )  | 
						
						
							| 21 | 
							
								20
							 | 
							imbi1d | 
							 |-  ( C = if ( C e. ~H , C , 0h ) -> ( ( ( ( normh ` ( if ( A e. ~H , A , 0h ) -h C ) ) < ( D / 2 ) /\ ( normh ` ( C -h if ( B e. ~H , B , 0h ) ) ) < ( D / 2 ) ) -> ( normh ` ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) ) < D ) <-> ( ( ( normh ` ( if ( A e. ~H , A , 0h ) -h if ( C e. ~H , C , 0h ) ) ) < ( D / 2 ) /\ ( normh ` ( if ( C e. ~H , C , 0h ) -h if ( B e. ~H , B , 0h ) ) ) < ( D / 2 ) ) -> ( normh ` ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) ) < D ) ) )  | 
						
						
							| 22 | 
							
								
							 | 
							oveq1 | 
							 |-  ( D = if ( D e. RR , D , 2 ) -> ( D / 2 ) = ( if ( D e. RR , D , 2 ) / 2 ) )  | 
						
						
							| 23 | 
							
								22
							 | 
							breq2d | 
							 |-  ( D = if ( D e. RR , D , 2 ) -> ( ( normh ` ( if ( A e. ~H , A , 0h ) -h if ( C e. ~H , C , 0h ) ) ) < ( D / 2 ) <-> ( normh ` ( if ( A e. ~H , A , 0h ) -h if ( C e. ~H , C , 0h ) ) ) < ( if ( D e. RR , D , 2 ) / 2 ) ) )  | 
						
						
							| 24 | 
							
								22
							 | 
							breq2d | 
							 |-  ( D = if ( D e. RR , D , 2 ) -> ( ( normh ` ( if ( C e. ~H , C , 0h ) -h if ( B e. ~H , B , 0h ) ) ) < ( D / 2 ) <-> ( normh ` ( if ( C e. ~H , C , 0h ) -h if ( B e. ~H , B , 0h ) ) ) < ( if ( D e. RR , D , 2 ) / 2 ) ) )  | 
						
						
							| 25 | 
							
								23 24
							 | 
							anbi12d | 
							 |-  ( D = if ( D e. RR , D , 2 ) -> ( ( ( normh ` ( if ( A e. ~H , A , 0h ) -h if ( C e. ~H , C , 0h ) ) ) < ( D / 2 ) /\ ( normh ` ( if ( C e. ~H , C , 0h ) -h if ( B e. ~H , B , 0h ) ) ) < ( D / 2 ) ) <-> ( ( normh ` ( if ( A e. ~H , A , 0h ) -h if ( C e. ~H , C , 0h ) ) ) < ( if ( D e. RR , D , 2 ) / 2 ) /\ ( normh ` ( if ( C e. ~H , C , 0h ) -h if ( B e. ~H , B , 0h ) ) ) < ( if ( D e. RR , D , 2 ) / 2 ) ) ) )  | 
						
						
							| 26 | 
							
								
							 | 
							breq2 | 
							 |-  ( D = if ( D e. RR , D , 2 ) -> ( ( normh ` ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) ) < D <-> ( normh ` ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) ) < if ( D e. RR , D , 2 ) ) )  | 
						
						
							| 27 | 
							
								25 26
							 | 
							imbi12d | 
							 |-  ( D = if ( D e. RR , D , 2 ) -> ( ( ( ( normh ` ( if ( A e. ~H , A , 0h ) -h if ( C e. ~H , C , 0h ) ) ) < ( D / 2 ) /\ ( normh ` ( if ( C e. ~H , C , 0h ) -h if ( B e. ~H , B , 0h ) ) ) < ( D / 2 ) ) -> ( normh ` ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) ) < D ) <-> ( ( ( normh ` ( if ( A e. ~H , A , 0h ) -h if ( C e. ~H , C , 0h ) ) ) < ( if ( D e. RR , D , 2 ) / 2 ) /\ ( normh ` ( if ( C e. ~H , C , 0h ) -h if ( B e. ~H , B , 0h ) ) ) < ( if ( D e. RR , D , 2 ) / 2 ) ) -> ( normh ` ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) ) < if ( D e. RR , D , 2 ) ) ) )  | 
						
						
							| 28 | 
							
								
							 | 
							ifhvhv0 | 
							 |-  if ( A e. ~H , A , 0h ) e. ~H  | 
						
						
							| 29 | 
							
								
							 | 
							ifhvhv0 | 
							 |-  if ( B e. ~H , B , 0h ) e. ~H  | 
						
						
							| 30 | 
							
								
							 | 
							ifhvhv0 | 
							 |-  if ( C e. ~H , C , 0h ) e. ~H  | 
						
						
							| 31 | 
							
								
							 | 
							2re | 
							 |-  2 e. RR  | 
						
						
							| 32 | 
							
								31
							 | 
							elimel | 
							 |-  if ( D e. RR , D , 2 ) e. RR  | 
						
						
							| 33 | 
							
								28 29 30 32
							 | 
							norm3lem | 
							 |-  ( ( ( normh ` ( if ( A e. ~H , A , 0h ) -h if ( C e. ~H , C , 0h ) ) ) < ( if ( D e. RR , D , 2 ) / 2 ) /\ ( normh ` ( if ( C e. ~H , C , 0h ) -h if ( B e. ~H , B , 0h ) ) ) < ( if ( D e. RR , D , 2 ) / 2 ) ) -> ( normh ` ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) ) < if ( D e. RR , D , 2 ) )  | 
						
						
							| 34 | 
							
								6 14 21 27 33
							 | 
							dedth4h | 
							 |-  ( ( ( A e. ~H /\ B e. ~H ) /\ ( C e. ~H /\ D e. RR ) ) -> ( ( ( normh ` ( A -h C ) ) < ( D / 2 ) /\ ( normh ` ( C -h B ) ) < ( D / 2 ) ) -> ( normh ` ( A -h B ) ) < D ) )  |