Metamath Proof Explorer


Theorem normf

Description: The norm function maps from Hilbert space to reals. (Contributed by NM, 6-Sep-2007) (Revised by Mario Carneiro, 15-Dec-2013) (New usage is discouraged.)

Ref Expression
Assertion normf
|- normh : ~H --> RR

Proof

Step Hyp Ref Expression
1 dfhnorm2
 |-  normh = ( x e. ~H |-> ( sqrt ` ( x .ih x ) ) )
2 hiidrcl
 |-  ( x e. ~H -> ( x .ih x ) e. RR )
3 hiidge0
 |-  ( x e. ~H -> 0 <_ ( x .ih x ) )
4 2 3 resqrtcld
 |-  ( x e. ~H -> ( sqrt ` ( x .ih x ) ) e. RR )
5 1 4 fmpti
 |-  normh : ~H --> RR