Metamath Proof Explorer


Theorem normge0

Description: The norm of a vector is nonnegative. (Contributed by NM, 29-May-1999) (New usage is discouraged.)

Ref Expression
Assertion normge0
|- ( A e. ~H -> 0 <_ ( normh ` A ) )

Proof

Step Hyp Ref Expression
1 hiidrcl
 |-  ( A e. ~H -> ( A .ih A ) e. RR )
2 hiidge0
 |-  ( A e. ~H -> 0 <_ ( A .ih A ) )
3 1 2 sqrtge0d
 |-  ( A e. ~H -> 0 <_ ( sqrt ` ( A .ih A ) ) )
4 normval
 |-  ( A e. ~H -> ( normh ` A ) = ( sqrt ` ( A .ih A ) ) )
5 3 4 breqtrrd
 |-  ( A e. ~H -> 0 <_ ( normh ` A ) )