| Step |
Hyp |
Ref |
Expression |
| 1 |
|
normlem1.1 |
|- S e. CC |
| 2 |
|
normlem1.2 |
|- F e. ~H |
| 3 |
|
normlem1.3 |
|- G e. ~H |
| 4 |
|
normlem1.4 |
|- R e. RR |
| 5 |
|
normlem1.5 |
|- ( abs ` S ) = 1 |
| 6 |
4
|
recni |
|- R e. CC |
| 7 |
1 6
|
mulcli |
|- ( S x. R ) e. CC |
| 8 |
7 2 3
|
normlem0 |
|- ( ( F -h ( ( S x. R ) .h G ) ) .ih ( F -h ( ( S x. R ) .h G ) ) ) = ( ( ( F .ih F ) + ( -u ( * ` ( S x. R ) ) x. ( F .ih G ) ) ) + ( ( -u ( S x. R ) x. ( G .ih F ) ) + ( ( ( S x. R ) x. ( * ` ( S x. R ) ) ) x. ( G .ih G ) ) ) ) |
| 9 |
1 6
|
cjmuli |
|- ( * ` ( S x. R ) ) = ( ( * ` S ) x. ( * ` R ) ) |
| 10 |
6
|
cjrebi |
|- ( R e. RR <-> ( * ` R ) = R ) |
| 11 |
4 10
|
mpbi |
|- ( * ` R ) = R |
| 12 |
11
|
oveq2i |
|- ( ( * ` S ) x. ( * ` R ) ) = ( ( * ` S ) x. R ) |
| 13 |
9 12
|
eqtri |
|- ( * ` ( S x. R ) ) = ( ( * ` S ) x. R ) |
| 14 |
13
|
negeqi |
|- -u ( * ` ( S x. R ) ) = -u ( ( * ` S ) x. R ) |
| 15 |
1
|
cjcli |
|- ( * ` S ) e. CC |
| 16 |
15 6
|
mulneg2i |
|- ( ( * ` S ) x. -u R ) = -u ( ( * ` S ) x. R ) |
| 17 |
14 16
|
eqtr4i |
|- -u ( * ` ( S x. R ) ) = ( ( * ` S ) x. -u R ) |
| 18 |
17
|
oveq1i |
|- ( -u ( * ` ( S x. R ) ) x. ( F .ih G ) ) = ( ( ( * ` S ) x. -u R ) x. ( F .ih G ) ) |
| 19 |
18
|
oveq2i |
|- ( ( F .ih F ) + ( -u ( * ` ( S x. R ) ) x. ( F .ih G ) ) ) = ( ( F .ih F ) + ( ( ( * ` S ) x. -u R ) x. ( F .ih G ) ) ) |
| 20 |
1 6
|
mulneg2i |
|- ( S x. -u R ) = -u ( S x. R ) |
| 21 |
20
|
eqcomi |
|- -u ( S x. R ) = ( S x. -u R ) |
| 22 |
21
|
oveq1i |
|- ( -u ( S x. R ) x. ( G .ih F ) ) = ( ( S x. -u R ) x. ( G .ih F ) ) |
| 23 |
9
|
oveq2i |
|- ( ( S x. R ) x. ( * ` ( S x. R ) ) ) = ( ( S x. R ) x. ( ( * ` S ) x. ( * ` R ) ) ) |
| 24 |
6
|
cjcli |
|- ( * ` R ) e. CC |
| 25 |
1 6 15 24
|
mul4i |
|- ( ( S x. R ) x. ( ( * ` S ) x. ( * ` R ) ) ) = ( ( S x. ( * ` S ) ) x. ( R x. ( * ` R ) ) ) |
| 26 |
5
|
oveq1i |
|- ( ( abs ` S ) ^ 2 ) = ( 1 ^ 2 ) |
| 27 |
1
|
absvalsqi |
|- ( ( abs ` S ) ^ 2 ) = ( S x. ( * ` S ) ) |
| 28 |
|
sq1 |
|- ( 1 ^ 2 ) = 1 |
| 29 |
26 27 28
|
3eqtr3i |
|- ( S x. ( * ` S ) ) = 1 |
| 30 |
11
|
oveq2i |
|- ( R x. ( * ` R ) ) = ( R x. R ) |
| 31 |
29 30
|
oveq12i |
|- ( ( S x. ( * ` S ) ) x. ( R x. ( * ` R ) ) ) = ( 1 x. ( R x. R ) ) |
| 32 |
6 6
|
mulcli |
|- ( R x. R ) e. CC |
| 33 |
32
|
mullidi |
|- ( 1 x. ( R x. R ) ) = ( R x. R ) |
| 34 |
31 33
|
eqtri |
|- ( ( S x. ( * ` S ) ) x. ( R x. ( * ` R ) ) ) = ( R x. R ) |
| 35 |
25 34
|
eqtri |
|- ( ( S x. R ) x. ( ( * ` S ) x. ( * ` R ) ) ) = ( R x. R ) |
| 36 |
23 35
|
eqtri |
|- ( ( S x. R ) x. ( * ` ( S x. R ) ) ) = ( R x. R ) |
| 37 |
6
|
sqvali |
|- ( R ^ 2 ) = ( R x. R ) |
| 38 |
36 37
|
eqtr4i |
|- ( ( S x. R ) x. ( * ` ( S x. R ) ) ) = ( R ^ 2 ) |
| 39 |
38
|
oveq1i |
|- ( ( ( S x. R ) x. ( * ` ( S x. R ) ) ) x. ( G .ih G ) ) = ( ( R ^ 2 ) x. ( G .ih G ) ) |
| 40 |
22 39
|
oveq12i |
|- ( ( -u ( S x. R ) x. ( G .ih F ) ) + ( ( ( S x. R ) x. ( * ` ( S x. R ) ) ) x. ( G .ih G ) ) ) = ( ( ( S x. -u R ) x. ( G .ih F ) ) + ( ( R ^ 2 ) x. ( G .ih G ) ) ) |
| 41 |
19 40
|
oveq12i |
|- ( ( ( F .ih F ) + ( -u ( * ` ( S x. R ) ) x. ( F .ih G ) ) ) + ( ( -u ( S x. R ) x. ( G .ih F ) ) + ( ( ( S x. R ) x. ( * ` ( S x. R ) ) ) x. ( G .ih G ) ) ) ) = ( ( ( F .ih F ) + ( ( ( * ` S ) x. -u R ) x. ( F .ih G ) ) ) + ( ( ( S x. -u R ) x. ( G .ih F ) ) + ( ( R ^ 2 ) x. ( G .ih G ) ) ) ) |
| 42 |
8 41
|
eqtri |
|- ( ( F -h ( ( S x. R ) .h G ) ) .ih ( F -h ( ( S x. R ) .h G ) ) ) = ( ( ( F .ih F ) + ( ( ( * ` S ) x. -u R ) x. ( F .ih G ) ) ) + ( ( ( S x. -u R ) x. ( G .ih F ) ) + ( ( R ^ 2 ) x. ( G .ih G ) ) ) ) |