Step |
Hyp |
Ref |
Expression |
1 |
|
normlem1.1 |
|- S e. CC |
2 |
|
normlem1.2 |
|- F e. ~H |
3 |
|
normlem1.3 |
|- G e. ~H |
4 |
|
normlem2.4 |
|- B = -u ( ( ( * ` S ) x. ( F .ih G ) ) + ( S x. ( G .ih F ) ) ) |
5 |
1
|
cjcli |
|- ( * ` S ) e. CC |
6 |
2 3
|
hicli |
|- ( F .ih G ) e. CC |
7 |
5 6
|
mulcli |
|- ( ( * ` S ) x. ( F .ih G ) ) e. CC |
8 |
3 2
|
hicli |
|- ( G .ih F ) e. CC |
9 |
1 8
|
mulcli |
|- ( S x. ( G .ih F ) ) e. CC |
10 |
7 9
|
cjaddi |
|- ( * ` ( ( ( * ` S ) x. ( F .ih G ) ) + ( S x. ( G .ih F ) ) ) ) = ( ( * ` ( ( * ` S ) x. ( F .ih G ) ) ) + ( * ` ( S x. ( G .ih F ) ) ) ) |
11 |
1
|
cjcji |
|- ( * ` ( * ` S ) ) = S |
12 |
11
|
eqcomi |
|- S = ( * ` ( * ` S ) ) |
13 |
3 2
|
his1i |
|- ( G .ih F ) = ( * ` ( F .ih G ) ) |
14 |
12 13
|
oveq12i |
|- ( S x. ( G .ih F ) ) = ( ( * ` ( * ` S ) ) x. ( * ` ( F .ih G ) ) ) |
15 |
5 6
|
cjmuli |
|- ( * ` ( ( * ` S ) x. ( F .ih G ) ) ) = ( ( * ` ( * ` S ) ) x. ( * ` ( F .ih G ) ) ) |
16 |
14 15
|
eqtr4i |
|- ( S x. ( G .ih F ) ) = ( * ` ( ( * ` S ) x. ( F .ih G ) ) ) |
17 |
2 3
|
his1i |
|- ( F .ih G ) = ( * ` ( G .ih F ) ) |
18 |
17
|
oveq2i |
|- ( ( * ` S ) x. ( F .ih G ) ) = ( ( * ` S ) x. ( * ` ( G .ih F ) ) ) |
19 |
1 8
|
cjmuli |
|- ( * ` ( S x. ( G .ih F ) ) ) = ( ( * ` S ) x. ( * ` ( G .ih F ) ) ) |
20 |
18 19
|
eqtr4i |
|- ( ( * ` S ) x. ( F .ih G ) ) = ( * ` ( S x. ( G .ih F ) ) ) |
21 |
16 20
|
oveq12i |
|- ( ( S x. ( G .ih F ) ) + ( ( * ` S ) x. ( F .ih G ) ) ) = ( ( * ` ( ( * ` S ) x. ( F .ih G ) ) ) + ( * ` ( S x. ( G .ih F ) ) ) ) |
22 |
10 21
|
eqtr4i |
|- ( * ` ( ( ( * ` S ) x. ( F .ih G ) ) + ( S x. ( G .ih F ) ) ) ) = ( ( S x. ( G .ih F ) ) + ( ( * ` S ) x. ( F .ih G ) ) ) |
23 |
7 9
|
addcomi |
|- ( ( ( * ` S ) x. ( F .ih G ) ) + ( S x. ( G .ih F ) ) ) = ( ( S x. ( G .ih F ) ) + ( ( * ` S ) x. ( F .ih G ) ) ) |
24 |
22 23
|
eqtr4i |
|- ( * ` ( ( ( * ` S ) x. ( F .ih G ) ) + ( S x. ( G .ih F ) ) ) ) = ( ( ( * ` S ) x. ( F .ih G ) ) + ( S x. ( G .ih F ) ) ) |
25 |
7 9
|
addcli |
|- ( ( ( * ` S ) x. ( F .ih G ) ) + ( S x. ( G .ih F ) ) ) e. CC |
26 |
25
|
cjrebi |
|- ( ( ( ( * ` S ) x. ( F .ih G ) ) + ( S x. ( G .ih F ) ) ) e. RR <-> ( * ` ( ( ( * ` S ) x. ( F .ih G ) ) + ( S x. ( G .ih F ) ) ) ) = ( ( ( * ` S ) x. ( F .ih G ) ) + ( S x. ( G .ih F ) ) ) ) |
27 |
24 26
|
mpbir |
|- ( ( ( * ` S ) x. ( F .ih G ) ) + ( S x. ( G .ih F ) ) ) e. RR |
28 |
27
|
renegcli |
|- -u ( ( ( * ` S ) x. ( F .ih G ) ) + ( S x. ( G .ih F ) ) ) e. RR |
29 |
4 28
|
eqeltri |
|- B e. RR |