Step |
Hyp |
Ref |
Expression |
1 |
|
normlem1.1 |
|- S e. CC |
2 |
|
normlem1.2 |
|- F e. ~H |
3 |
|
normlem1.3 |
|- G e. ~H |
4 |
|
normlem2.4 |
|- B = -u ( ( ( * ` S ) x. ( F .ih G ) ) + ( S x. ( G .ih F ) ) ) |
5 |
|
normlem3.5 |
|- A = ( G .ih G ) |
6 |
|
normlem3.6 |
|- C = ( F .ih F ) |
7 |
|
normlem3.7 |
|- R e. RR |
8 |
3 3
|
hicli |
|- ( G .ih G ) e. CC |
9 |
5 8
|
eqeltri |
|- A e. CC |
10 |
7
|
recni |
|- R e. CC |
11 |
10
|
sqcli |
|- ( R ^ 2 ) e. CC |
12 |
9 11
|
mulcli |
|- ( A x. ( R ^ 2 ) ) e. CC |
13 |
1 2 3 4
|
normlem2 |
|- B e. RR |
14 |
13
|
recni |
|- B e. CC |
15 |
14 10
|
mulcli |
|- ( B x. R ) e. CC |
16 |
12 15
|
addcomi |
|- ( ( A x. ( R ^ 2 ) ) + ( B x. R ) ) = ( ( B x. R ) + ( A x. ( R ^ 2 ) ) ) |
17 |
1
|
cjcli |
|- ( * ` S ) e. CC |
18 |
2 3
|
hicli |
|- ( F .ih G ) e. CC |
19 |
17 18
|
mulcli |
|- ( ( * ` S ) x. ( F .ih G ) ) e. CC |
20 |
3 2
|
hicli |
|- ( G .ih F ) e. CC |
21 |
1 20
|
mulcli |
|- ( S x. ( G .ih F ) ) e. CC |
22 |
19 21
|
addcli |
|- ( ( ( * ` S ) x. ( F .ih G ) ) + ( S x. ( G .ih F ) ) ) e. CC |
23 |
22 10
|
mulneg1i |
|- ( -u ( ( ( * ` S ) x. ( F .ih G ) ) + ( S x. ( G .ih F ) ) ) x. R ) = -u ( ( ( ( * ` S ) x. ( F .ih G ) ) + ( S x. ( G .ih F ) ) ) x. R ) |
24 |
4
|
oveq1i |
|- ( B x. R ) = ( -u ( ( ( * ` S ) x. ( F .ih G ) ) + ( S x. ( G .ih F ) ) ) x. R ) |
25 |
22 10
|
mulneg2i |
|- ( ( ( ( * ` S ) x. ( F .ih G ) ) + ( S x. ( G .ih F ) ) ) x. -u R ) = -u ( ( ( ( * ` S ) x. ( F .ih G ) ) + ( S x. ( G .ih F ) ) ) x. R ) |
26 |
23 24 25
|
3eqtr4i |
|- ( B x. R ) = ( ( ( ( * ` S ) x. ( F .ih G ) ) + ( S x. ( G .ih F ) ) ) x. -u R ) |
27 |
10
|
negcli |
|- -u R e. CC |
28 |
19 21 27
|
adddiri |
|- ( ( ( ( * ` S ) x. ( F .ih G ) ) + ( S x. ( G .ih F ) ) ) x. -u R ) = ( ( ( ( * ` S ) x. ( F .ih G ) ) x. -u R ) + ( ( S x. ( G .ih F ) ) x. -u R ) ) |
29 |
17 18 27
|
mul32i |
|- ( ( ( * ` S ) x. ( F .ih G ) ) x. -u R ) = ( ( ( * ` S ) x. -u R ) x. ( F .ih G ) ) |
30 |
1 20 27
|
mul32i |
|- ( ( S x. ( G .ih F ) ) x. -u R ) = ( ( S x. -u R ) x. ( G .ih F ) ) |
31 |
29 30
|
oveq12i |
|- ( ( ( ( * ` S ) x. ( F .ih G ) ) x. -u R ) + ( ( S x. ( G .ih F ) ) x. -u R ) ) = ( ( ( ( * ` S ) x. -u R ) x. ( F .ih G ) ) + ( ( S x. -u R ) x. ( G .ih F ) ) ) |
32 |
26 28 31
|
3eqtri |
|- ( B x. R ) = ( ( ( ( * ` S ) x. -u R ) x. ( F .ih G ) ) + ( ( S x. -u R ) x. ( G .ih F ) ) ) |
33 |
5
|
oveq2i |
|- ( ( R ^ 2 ) x. A ) = ( ( R ^ 2 ) x. ( G .ih G ) ) |
34 |
11 9 33
|
mulcomli |
|- ( A x. ( R ^ 2 ) ) = ( ( R ^ 2 ) x. ( G .ih G ) ) |
35 |
32 34
|
oveq12i |
|- ( ( B x. R ) + ( A x. ( R ^ 2 ) ) ) = ( ( ( ( ( * ` S ) x. -u R ) x. ( F .ih G ) ) + ( ( S x. -u R ) x. ( G .ih F ) ) ) + ( ( R ^ 2 ) x. ( G .ih G ) ) ) |
36 |
17 27
|
mulcli |
|- ( ( * ` S ) x. -u R ) e. CC |
37 |
36 18
|
mulcli |
|- ( ( ( * ` S ) x. -u R ) x. ( F .ih G ) ) e. CC |
38 |
1 27
|
mulcli |
|- ( S x. -u R ) e. CC |
39 |
38 20
|
mulcli |
|- ( ( S x. -u R ) x. ( G .ih F ) ) e. CC |
40 |
11 8
|
mulcli |
|- ( ( R ^ 2 ) x. ( G .ih G ) ) e. CC |
41 |
37 39 40
|
addassi |
|- ( ( ( ( ( * ` S ) x. -u R ) x. ( F .ih G ) ) + ( ( S x. -u R ) x. ( G .ih F ) ) ) + ( ( R ^ 2 ) x. ( G .ih G ) ) ) = ( ( ( ( * ` S ) x. -u R ) x. ( F .ih G ) ) + ( ( ( S x. -u R ) x. ( G .ih F ) ) + ( ( R ^ 2 ) x. ( G .ih G ) ) ) ) |
42 |
16 35 41
|
3eqtri |
|- ( ( A x. ( R ^ 2 ) ) + ( B x. R ) ) = ( ( ( ( * ` S ) x. -u R ) x. ( F .ih G ) ) + ( ( ( S x. -u R ) x. ( G .ih F ) ) + ( ( R ^ 2 ) x. ( G .ih G ) ) ) ) |
43 |
6 42
|
oveq12i |
|- ( C + ( ( A x. ( R ^ 2 ) ) + ( B x. R ) ) ) = ( ( F .ih F ) + ( ( ( ( * ` S ) x. -u R ) x. ( F .ih G ) ) + ( ( ( S x. -u R ) x. ( G .ih F ) ) + ( ( R ^ 2 ) x. ( G .ih G ) ) ) ) ) |
44 |
12 15
|
addcli |
|- ( ( A x. ( R ^ 2 ) ) + ( B x. R ) ) e. CC |
45 |
2 2
|
hicli |
|- ( F .ih F ) e. CC |
46 |
6 45
|
eqeltri |
|- C e. CC |
47 |
44 46
|
addcomi |
|- ( ( ( A x. ( R ^ 2 ) ) + ( B x. R ) ) + C ) = ( C + ( ( A x. ( R ^ 2 ) ) + ( B x. R ) ) ) |
48 |
39 40
|
addcli |
|- ( ( ( S x. -u R ) x. ( G .ih F ) ) + ( ( R ^ 2 ) x. ( G .ih G ) ) ) e. CC |
49 |
45 37 48
|
addassi |
|- ( ( ( F .ih F ) + ( ( ( * ` S ) x. -u R ) x. ( F .ih G ) ) ) + ( ( ( S x. -u R ) x. ( G .ih F ) ) + ( ( R ^ 2 ) x. ( G .ih G ) ) ) ) = ( ( F .ih F ) + ( ( ( ( * ` S ) x. -u R ) x. ( F .ih G ) ) + ( ( ( S x. -u R ) x. ( G .ih F ) ) + ( ( R ^ 2 ) x. ( G .ih G ) ) ) ) ) |
50 |
43 47 49
|
3eqtr4i |
|- ( ( ( A x. ( R ^ 2 ) ) + ( B x. R ) ) + C ) = ( ( ( F .ih F ) + ( ( ( * ` S ) x. -u R ) x. ( F .ih G ) ) ) + ( ( ( S x. -u R ) x. ( G .ih F ) ) + ( ( R ^ 2 ) x. ( G .ih G ) ) ) ) |